
Li ZH, Liu G, Ji ZY et al. Towards cost-effective cloud downloading with Tencent big data. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 30(6): 1163–1174 Nov. 2015. DOI 10.1007/s11390-015-1591-5

Towards Cost-Effective Cloud Downloading with Tencent Big Data

Zhen-Hua Li 1,2 (李振华), Member, CCF, ACM, IEEE, Gang Liu 3 (刘 刚), Zhi-Yuan Ji 4,∗ (嵇智源)
and Roger Zimmermann 5, Senior Member, IEEE, Member, ACM

1School of Software, Tsinghua University, Beijing 100084, China
2Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
3QQXuanfeng System Group, Tencent Co., Ltd, Shanghai 200233, China
4High Technology Research and Development Center, Ministry of Science and Technology, Beijing 100044, China
5Department of Computer Science, National University of Singapore, Singapore 117417, Singapore

E-mail: lizhenhua1983@tsinghua.edu.cn; ganghust@qq.com; jzy@htrdc.com; rogerz@comp.nus.edu.sg

Received March 12, 2015; revised August 4, 2015.

Abstract The cloud downloading scheme, first proposed by us in 2011, has effectively optimized hundreds of millions of

users’ downloading experiences. Also, people start to build a variety of useful Internet services on top of cloud downloading.

In brief, by using cloud facilities to download (and cache) the requested file from the “best-effort” Internet on behalf of

the user, cloud downloading ensures the data availability and remarkably enhances the data delivery speed. Although

this scheme seems simple and straightforward, designing a real-world cloud downloading system involves complicated and

subtle trade-offs (between deployment cost and user experience) when serving a large number of users: 1) how to plan

the cloud cache capacity to achieve a high and affordable cache hit ratio, 2) how to accelerate the data delivery from the

cloud to numerous users, 3) how to handle the dense user requests for highly popular files, and 4) how to judge a potential

downloading failure of the cloud. This paper addresses these design trade-offs from a practical perspective, based on big

data from a nationwide commercial cloud downloading system, i.e., Tencent QQXuanfeng. Its running traces help us find

reasonable design strategies and parameters, and its real performances confirm the efficacy of our design. Our study provides

solid experiences and valuable heuristics for the developers of similar and relevant systems.

Keywords cloud downloading, cost-effective, design trade-off, big data

1 Introduction

Downloading is a basic service the Internet offers

to its users. Nevertheless, “high-quality” download-

ing service is still desired in today’s “best-effort” In-

ternet environments. Here the meaning of high-quality

is two-fold: 1) ensured data availability, and 2) high

data delivery speed. Ensured data availability implies

that at least one full copy of the requested file is avail-

able for the user(s). Meanwhile, the significance of high

data delivery speed lies in three aspects: 1) reducing

the download time, 2) saving the battery consumption

of mobile devices[1], and 3) enabling the user-friendly

video streaming service as the majority of downloading

traffic is ascribed to videos.

Existing downloading techniques mainly include the

C/S (client/server), CDN (content delivery network,

such as Akamai, L-3, and ChinaCache), and P2P (peer-

to-peer) approaches. The C/S approach is obviously

subject to the single-point bottleneck of the centra-

lized server (cluster), and thus lacks scalability. The

CDN approach optimizes downloading performance by

deploying edge servers in numerous locations that are

closer to users. However, as a commercial service, CDN

vendors typically only help to deliver (relatively popu-

lar) files for those content providers who pay for the

Regular Paper

Special Section on Networking and Distributed Computing for Big Data

This work is sponsored by the National Natural Science Foundation of China under Grant Nos. 61471217 and 61472266, the China
Postdoctoral Science Fund under Grant No. 2014M550735, and the CCF-Tencent Open Fund under Grant No. AGR20150201.

∗Corresponding Author

©2015 Springer Science+Business Media, LLC & Science Press, China



1164 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

service. On the other hand, the P2P approach mainly

relies on the often unstable but enormous end systems

owned by users to form data swarms[2-3]. The real

strength of P2P lies in its efficacy in distributing popu-

lar files that are each shared by a number of peers.

With regard to an unpopular file, for the lack of cor-

responding swarms/peers, it is generally hard to gua-

rantee the data availability or to maintain a high down-

loading speed. In a nutshell, all the existing techniques

are unsatisfactory under certain scenarios.

The emergence of cloud services[4] offers a new op-

portunity to address the challenging problem of ef-

ficiently downloading various files from various data

sources. The cloud downloading scheme, first pro-

posed by us in 2011[5], has effectively optimized hun-

dreds of millions of users’ downloading experiences up

to now[6-7]. The major commercial cloud download-

ing systems include Tencent QQXuanfeng 1○, Xunlei 2○,

Baidu CloudDisk 3○, and so forth.

The basic working principle of cloud downloading is

depicted in Fig.1. First, a user sends his/her download-

ing request to the cloud. Subsequently, the cloud down-

loads the requested file from the Internet on behalf of

the user, and stores a copy in the cloud cache. Then, the

user can retrieve his/her requested file from the cloud

with a high speed. In a word, by making use of cloud

facilities, cloud downloading ensures the data availabi-

lity and remarkably enhances the data delivery speed.

Note that the business model of a cloud downloading

system is the opposite of a CDN, because CDNs only

serve paid content providers, whereas a cloud down-

loading system charges its users (i.e., content receivers)

for better downloading experiences.

2. Download 

Cloud

and Cache

3. Retrieve

1. Request

 

User

Tracker

Peer 

Internet

Swarm

FTP
Server

HTTP

Server

Fig.1. Basic working principle of cloud downloading.

Although the cloud downloading scheme seems sim-

ple and straightforward, designing a real-world cloud

downloading system involves complicated and subtle

trade-offs (between deployment cost and user experi-

ence) when it serves a large number of users. According

to our practical experiences in deploying, maintaining,

and optimizing a nationwide cloud downloading system,

i.e., Tencent QQXuanfeng, the major design trade-offs

need to address the following four questions.

• How to plan the cloud cache capacity to achieve a

high and affordable cache hit ratio? Ideally, the cloud

should permanently cache every downloaded file to en-

sure its data availability forever, and then the cache

hit ratio would be the highest. But in practice, the re-

quired storage cost for permanently caching everything

is unaffordable. By measuring the retrieval delay of all

requested files, we find that almost all requested files

are retrieved within 12 days since they were requested.

Thus, QQXuanfeng only caches a newly downloaded

file for 12 days to achieve a high and affordable cache

hit ratio. Besides, we study the cloud cache replace-

ment strategy in Subsection 3.1, in particular the LFU

strategy and its “frequency aging effect”.

• How to accelerate the data retrieval from the cloud

to numerous users? Given that cross-ISP data delivery

performance seriously degrades and inter-ISP network

traffic cost is expensive in China, we address this prob-

lem via the intra-cloud ISP-aware data uploading tech-

nique which will be elaborated in Subsection 3.2. In

brief, we deploy specialized uploading servers in multi-

ple major ISP networks and always attempt to restrict

the data delivery flow to within the same ISP network

1○http://xf.qq.com, Sept. 2015.
2○http://lixian.vip.xunlei.com, Sept. 2015.
3○http://pan.baidu.com, Sept. 2015.



Zhen-Hua Li et al.: Towards Cost-Effective Cloud Downloading with Tencent Big Data 1165

as a user’s. Though this technique looks quite simple,

it is effective in most cases.

• How to handle the dense user requests for highly

popular files? The key strength of cloud downloading

lies in delivering unpopular files[5]. But as the user scale

grows, a considerable portion of user requests are is-

sued for highly popular files. These dense downloading

requests for highly popular files result in a severe band-

width burden (including “flash crowds”) on the cloud.

To this end, we develop a special “tracker” to monitor

online users and their shared files. When a user wants

to retrieve a file f , he/she is first directed by the Tracker

to other online users (sharing f) for peer-assisted data

delivery (which will be elaborated in Subsection 3.3). If

the peer-assisted data delivery speed is unsatisfactory,

QQXuanfeng would provide extra cloud bandwidth for

further acceleration. Thereby, the severe cloud band-

width burden for delivering highly popular files can be

effectively alleviated.

• How to judge a potential downloading failure of the

cloud? It is impossible to accurately judge whether a

requested file can be eventually downloaded if we keep

on trying. Instead, we have to notify the user that

her/his downloading request is judged to have failed at

the “right” time so that the user does not need to wait

endlessly. Then the critical question is: what is(are)

the rule(s) to select the “right” time? Based on em-

pirical data, we employ a combination of three rules:

1) after QQXuanfeng receives a downloading request,

if it cannot download any part of the requested file

in five minutes, the downloading request is judged to

have failed; 2) QQXuanfeng periodically examines the

downloading progress of each requested file, and if the

downloading progress stagnates (i.e., does not change)

in a certain period, the corresponding downloading re-

quest is also judged to have failed; 3) if QQXuanfeng

cannot finish downloading a requested file in a whole

day, it recommends the user to give up. More details

will be presented in Subsection 3.4.

By the end of 2013, the number of registered users

of QQXuanfeng had exceeded 26 million, and the num-

ber of daily received downloading requests had reached

0.72 million. The whole system utilized 663 commo-

dity servers, and the cloud cache accommodated 800

TB of unique data. Users were charged according to

their allocated cloud storage space, regardless of their

bandwidth/traffic consumed. The reason is straightfor-

ward: a user of QQXuanfeng usually retrieves his/her

requested file from the cloud at most once, and thus

his/her bandwidth/traffic consumed is basically depen-

dent on his/her allocated cloud storage space.

Real performance data of QQXuanfeng confirm the

efficacy of our design. The average data delivery speed

(from the cloud to users) is as high as 2.1 Mbps, where

81% of delivery speeds exceed 300 Kbps — the ba-

sic playback rate of online videos. In comparison, the

average data delivery speed of common downloading is

merely 0.55 Mbps. Common downloading denotes the

common way in which a user downloads a file from the

Internet, i.e., by using a common web browser or a P2P

client software. The cloud cache hit ratio reaches 87%,

and the downloading failure ratio is as low as 7.8%.

Further, when users retrieve highly popular files from

QQXuanfeng, 78% of network traffic originates from

peering users, thus greatly reducing the cloud band-

width burden.

Nowadays, people start to build a variety of useful

Internet services on top of cloud downloading, such as

cloud-based media converters[8] and cloud-accelerated

web browsers (e.g., QQ mobile web browser, UCWeb

browser, and Amazon Silk web browser). For example,

with the help of cloud downloading, a cloud-based me-

dia converter only requires its users to upload the me-

dia links rather than the original media files, to avoid

unnecessary uploading traffic and energy consumption

of the end user’s equipment. This is especially help-

ful for those battery-operated small-screen mobile de-

vices. Our study of cloud downloading provides solid

experiences and valuable heuristics for the developers

of similar and relevant systems.

2 System Overview

The system architecture of QQXuanfeng is made up

of six components: 1) ISP proxies, 2) task manager, 3)

task dispatcher, 4) downloaders, 5) cloud cache, and

6) tracker, as depicted in Fig.2. The detailed hard-

ware configuration of each component is listed in Ta-

ble 1. All the information of memory, storage, and

bandwidth refers to one server. Overall, the system

utilizes 663 commodity servers, including 400 chunk

servers that constitute an 800 TB cloud cache, 140

download servers with nearly 45 Gbps of Internet band-

width, 93 uploading servers with around 20 Gbps of In-

ternet bandwidth, and so forth. Each server runs the

SUSE Enterprise Linux (version 10.1) operating sys-

tem. Below we overview the whole system by following

the message/data flows with regard to a typical cloud

downloading task.



1166 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

Tracker

9
1

ISP 1

ISP 2

ISP n

..
.

ISP 1 Proxy

ISP 2 Proxy

Client ISP n Proxy

10

8

2

3

4

5

7

Task Manager Task Dispatcher

Cloud Cache
(400 Chunk Servers,

93 Uploading Servers)

6

Downloaders
(140 Servers)

Intranet Data Flow

Internet Data Flow

Internet

Fig.2. System architecture of QQXuanfeng (in Dec. 2013).

Table 1. Hardware Configuration of QQXuanfeng (in Dec. 2013)

Building Block Number of Servers Memory (GB) Storage Internet Bandwidth (Gbps)

ISP proxy 6 8 250 GB 0.300

Task manager 4 8 250 GB —

Task dispatcher 3 8 460 GB —

Downloaders 140 8 460 GB 0.325

Cloud cache 496 = 400 + 93 + 3 8 4 TB (chunk server) 0.300

Tracker 14 8 150 GB 0.300

The user of QQXuanfeng should have installed its

client software which can be downloaded from the

QQXuanfeng website 4○. The client software is able to

recognize which ISP network the user belongs to from

the user’s IP address, thereby the downloading request

is first sent to the corresponding ISP proxy (see arrow 1

in Fig.2). Each ISP proxy maintains a downloading re-

quest queue to restrict the number of downloading re-

quests sent to the task manager (see arrow 2 in Fig.2),

so that the task manager is resilient to possible request

upsurges or DoS (denial-of-service) attacks in any ISP

network. By the end of 2013, QQXuanfeng has de-

ployed four ISP proxies in the four major ISP networks

in China: Telecom, Unicom, Mobile, and CERNET. If

the user does not belong to any of the abovementioned

ISP networks, his/her downloading request is simply

sent to a random ISP proxy.

When receiving a downloading request, the task

manager first examines whether the requested file has

a copy in the cloud cache (see arrow 3 in Fig.2). If

the downloading request is a BitTorrent/eMule link,

the task manager examines whether the cloud cache

contains a file that has the same hash code with that

contained in the BitTorrent/eMule link (since a BitTor-

rent/eMule link contains the hash code of its affiliated

file in itself, while an HTTP/FTP link does not). Oth-

erwise, the task manager directly examines whether the

downloading link is repeated in the cloud cache. If the

requested file actually has a copy, the user can then re-

trieve it from the cloud cache (see arrow 8 in Fig.2),

from other online users (see arrow 10 in Fig.2), or from

both sources in parallel. Otherwise, the task manager

hands the request over to the task dispatcher (see ar-

row 4 in Fig.2).

The task dispatcher assigns the downloading request

to one “downloader” server for data downloading from

the Internet in a common way (see arrow 5 in Fig.2).

For example, if the requested file is hosted in a P2P data

swarm, the assigned downloader would act as a common

peer to join in the data swarm. The task dispatcher is

also responsible for balancing the bandwidth loads of

the 140 downloaders. Here, the number of downloaders

(140) is empirically determined to ensure that the total

downloading bandwidth (45 Gbps) exceeds the peak

load of downloading tasks (≈ 40 Gbps), so that the

view startup delay (which will be explained in Subsec-

tion 3.1) can be minimized. Each downloader executes

multiple downloading tasks in parallel to make full use

of its downloading bandwidth (see arrow 6 in Fig.2).

Accordingly, the task dispatcher always assigns a newly

4○http://xf.qq.com, Sept. 2015.



Zhen-Hua Li et al.: Towards Cost-Effective Cloud Downloading with Tencent Big Data 1167

incoming downloading request to the downloader that

has the lowest real-time downloading speed.

Once the downloader finishes a downloading task,

it first computes the hash code of the downloaded file,

and then attempts to store the file into the cloud cache

(see arrow 7 in Fig.2). The downloader first examines

whether the file has a copy in the cloud cache (using

the hash code). If the file is duplicated, the downloader

simply discards it. Otherwise, the downloader examines

whether the cloud cache has enough spare space to ac-

commodate the new file. If the cloud cache does not

have enough spare space, it has to delete some cached

files to obtain enough spare space for accommodating

the new file. The cloud cache replacement strategy will

be studied in Subsection 3.1.

The cloud cache is composed of 400 chunk servers,

93 uploading servers, and three index servers, as demon-

strated in Fig.3. All these servers are connected by

a DCN (data center network). The DCN adopts the

traditional three-layer tree structure to organize its

switches, consisting of a core layer in the root of the

tree, an aggregation layer in the middle, and an edge

layer at the leaves. Inside the cloud cache, every file is

segmented into fixed-size chunks stored in the chunk

servers, and every chunk has a duplicate for redun-

dancy. As a result, the 400 chunk servers can accom-

modate a total of 400 × 4 TB
2 = 800 TB of unique data.

DCN Chunk 

Servers

Uploading 

Servers

Client

ISP 1 ISP 1 Servers

Client

ISP 2 ISP2 Servers

Client

ISP n ISP n Servers

Index

Servers

DCN Data Flow

Internet Data

Flow

Client

ISP 3 ISP3 Servers

...

...

Fig.3. System architecture of the cloud cache.

To facilitate load balancing and exploit chunk corre-

lations in the same file, all the chunks of a file are stored

together in a chunk server that has the biggest real-time

spare storage space. Meanwhile, duplicate chunks of

this file must be stored in another chunk server. There

is an index server as well as two backup index servers

maintaining the metadata of chunks (for chunk search

and validation). The metadata is organized as a list of

n-tuples that look like (file hash code, file link, number

of chunks, physical location of the first chunk, physical

location of the first duplicate chunk, · · · ).

3 Design Trade-Off

This section addresses the major design trade-offs of

cloud downloading in detail, based on the QQXuanfeng

big data that helps us find reasonable design strategies

and parameters[9].

3.1 Planning the Cloud Cache Capacity

The biggest hardware, network, and energy cost

of the QQXuanfeng system originates from the cloud

cache component. Cloud cache plays a critical role in

the system by avoiding repeated downloading tasks, in-

creasing the downloading success ratio, and reducing

the view startup delay. If a user requests for a non-

cached video file, he/she must first wait for the cloud

to download it from the Internet. Thus, he/she cannot

view the video immediately. Such waiting time is de-

noted as the view startup delay. Consequently, we want

the cloud cache hit ratio to be as high as possible.

Ideally, if the cloud permanently caches every down-

loaded file, the cache hit ratio will be the highest, but

the required storage space is obviously unaffordable in

practice. By measuring the retrieval delay (if a file is

requested by a user at time t1 and is then retrieved by

the user at time t2, the corresponding retrieval delay is

t2 − t1) of all the requested files in Dec. 2013, we find

that almost all the requested files are retrieved within

12 days since they were requested. Specifically, the re-

trieval ratios corresponding to 1 day, 2 days, . . . , 12

days are 70%, 11%, . . . , 0.5%, respectively, while only

0.2% of the requested files are retrieved after 12 days.

Thereby, to achieve a high and affordable cache hit ra-

tio, QQXuanfeng only caches a newly downloaded file

for 12 days. Note that once a cached file is requested

again, its cache duration is reset to 12 days. If a file

has been cached for longer than its cache duration, the

user who issued the request will get notified by QQXu-

anfeng.

In Dec. 2013, the maximum number of daily re-

quests served by QQXuanfeng was 0.85M (M = mil-

lion), and QQXuanfeng is expected to handle up to



1168 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

1.0M daily requests. Since the average size of requested

files is 390 MB (refer to Fig.6) and a newly downloaded

file is cached for 12 days, the total cloud cache capacity

should be:

Ccache no hit ≈ 390 MB× 1.0M× 12 = 4 680 TB,

to well handle 1.0M daily requests when the cloud cache

hit ratio is 0. According to the running logs of QQXu-

anfeng, the cloud cache hit ratio generally lies in be-

tween 83% and 91% (87% on average). Taking the

worst case (83%) for conservative calculation, we plan

the cache capacity as:

Ccache ≈ 390 MB× 1.0M× 12× (1− 83%) = 796 TB.

Further, to cope with the possible fluctuations, the to-

tal cloud cache capacity is finally planned as Ccache =

800 TB, slightly larger than 796 TB.

Cache Replacement Strategy. As QQXuanfeng be-

comes more and more popular, it is quite possible that

the daily number of download requests will be much

higher than 1.0M some day. If the daily number of

download requests increases to 10M, what shall we do?

It is infeasible for us to construct a 8000-TB cloud cache

made up of 4 000 chunk servers — the cost is far be-

yond our current affordability. As a result, some data

must be replaced to provide cost-effective utilization of

the cloud cache capacity, where the cache replacement

strategy plays a key role.

We first investigate the performance of the three

commonly used cache replacement strategies, i.e., FIFO

(first in first out), LRU (least recently used), and LFU

(least frequently used) via trace-driven simulations.

The trace is a 14-day system log (refer to Subsection 4.1

for detailed information) of QQXuanfeng. As shown in

Fig.4, among the three common strategies, FIFO per-

forms the worst, and LFU performs the best. The simu-

lated cache capacity is configured as 100 TB, and using

larger cache capacities generates similar results.

Although LFU works best among the three common

strategies, it is known that LFU bears a non-negligible

“frequency aging” problem[10] (also called the “cache

pollution” problem) that may well harm its long-term

performance. Specifically, when LFU is applied, files

that used to be highly popular during one time period

tend to always remain in the cache, even when they

have not been requested for a long time period. In

other words, they “pollute” the cache. To address this

problem, we must take into account the “aging” effect

of the requesting frequencies of files. A typical solution

is to utilize a periodic aging function[11-12]:

fi+1(c) = α× fi(c), 0 < α < 1,

where fi(c) denotes the aging frequency of file c in the

i-th aging period (T ), and α denotes the aging ratio.

Typically, T is set to 24 hours and α is set to 0.5.

The performance of the resulting “typical LFU-aging”

strategy is also plotted in Fig.4. Obviously, the typi-

cal LFU-aging strategy is always better than FIFO and

LRU, and it outperforms LFU from the 8th day on.

2 4 6 8 10 12 14

0.70

0.75

0.80

Day

C
a
c
h
e
 H

it
 R

a
ti
o

Typical LFU-Aging

LFU

LRU

FIFO

Fig.4. Cache hit ratios of the three common cache replacement
strategies: FIFO, LRU, and LFU, as well as one “typical LFU-
aging” strategy where the aging period (T ) is 24 hours and the
aging ratio (α) is 0.5.

3.2 Accelerating the Data Retrieval

For an unpopular file, a fundamental problem of

cloud downloading is how to accelerate the data re-

trieval process, so that the user can retrieve it with

a high speed. Considering that cross-ISP data deli-

very performance degrades seriously and inter-ISP net-

work traffic is often expensive in China, we address this

problem via the intra-cloud ISP-aware data uploading

technique. In brief, we deploy specialized uploading

servers in multiple ISP networks (see Fig.3) and always

attempt to restrict the data flow to within the same

ISP network as the user’s.

However, as users’ requests come from tens of ISP

networks, in practice, we are unable to deploy upload-

ing servers in every involved ISP network. Observing

that the majority of downloading requests come from

the four major ISP networks in China, we only deployed

uploading servers in these four ISP networks. And the

number of uploading servers deployed in each ISP net-

work is mainly proportional to the corresponding net-

work traffic volume. If a user belongs to other ISP



Zhen-Hua Li et al.: Towards Cost-Effective Cloud Downloading with Tencent Big Data 1169

networks, we choose an uploading server that has the

lowest real-time uploading burden to serve him/her.

In detail, suppose a user locating at ISP 1 wants to

retrieve a file f stored in a chunk server S, and QQX-

uanfeng has placed 10 uploading servers (U1, U2, · · · ,
U10) in ISP 1. The chunks of f are first delivered from

S to a certain uploading server (say, U4) in ISP 1, and

then delivered from U4 to the user. The delivery pro-

cess is in a “pass-through” manner — as soon as U4

gets a complete chunk of f , U4 delivers the chunk to

the user. f is not cached in U4, because the intra-cloud

(DCN) delivery bandwidth is high (1 Gbps) and we do

not need to make things unnecessarily complicated.

3.3 Handling the Dense User Requests for

Highly Popular Files

The real strength of cloud downloading lies in deli-

vering unpopular files. However, as its user scale grows,

we discover that a considerable portion (43%) of re-

quests are issued for highly popular files. Here “highly

popular” is empirically taken as: receiving more than

10 requests per day (in the latest two weeks). Inside the

cloud cache, merely 0.45% of files are highly popular at

present, which confirms the massive request density of

highly popular files. These dense requests for highly

popular files result in a severe bandwidth burden (in-

cluding “flash crowds”) on the cloud.

To this end, we develop a special “tracker” to moni-

tor online users and their shared files. The tracker

maintains a list of 3-tuples (see arrow 9 in Fig.2).

Each 3-tuple looks like: (user ID; user IP address:port;

hash code (of the shared file); · · · ). Whenever a user

joins/leaves the QQXuanfeng system or changes his/her

shared files, he/she must notify the tracker. Meanwhile,

every online user sends a beacon message to the tracker

per five minutes to report his/her latest working status.

When a user wants to retrieve a file f from QQXu-

anfeng, he/she first asks the tracker whether there are

other online peers sharing f . If not, the user directly re-

trieves f from the cloud; otherwise, the user is directed

(by the tracker) to its online peers sharing f for peer-

assisted delivery. Note that the peer-assisted delivery

mechanism is only experimented on a portion of PC

users, rather than mobile users of QQXuanfeng. This is

because mobile devices (like smartphones and tablets)

consume energy more quickly with peer-assisted data

transfer[1]. If the average peer-assisted delivery speed

is satisfactory (> 2 Mbps), the user only retrieves data

chunks of f from his/her peers; otherwise, the user asks

QQXuanfeng for extra cloud bandwidth, trying to fur-

ther accelerate the user’s total retrieval speed to more

than 2 Mbps.

A user can maintain at most 25 simultaneous TCP

connections with his/her neighboring peers. Maintain-

ing too many simultaneous TCP connections cannot

enhance the data delivery speed, but brings about ex-

cessive control overhead. At the same time, the data

delivery speeds of all the connections are examined ev-

ery minute, in order to replace the worst connection(s)

with one or several random new connections.

A file is segmented into chunks of equal size, and the

chunk size should be a power of 2 bytes — typically be-

tween 32 KB and 16 MB. Every user in the peer swarm

maintains a “chunk map” and sends the chunk map to

his/her connected peers every minute if the chunk map

is updated. The user’s client (software) adopts a simple

chunk scheduling strategy: at any time, it only assigns

one chunk for one TCP connection to retrieve. When

the assigned chunk is obtained, the corresponding TCP

connection will be assigned to retrieve another chunk.

The chunk retrieval priority depends on the user’s re-

quirement: if the user chooses the “view-as-download”

mode, the chunks are retrieved in their playback order;

otherwise, the chunks are retrieved in the “rarest-first”

manner.

3.4 Judging a Potential Downloading
Failure of the Cloud

Due to the high dynamics and heterogeneity of to-

day’s “best-effort” Internet, it is impossible to accu-

rately judge whether a requested file can be eventually

obtained if we keep on trying. Instead, we have to tell

the user that his/her request is judged to have failed at

the “right” time, so that the user does not need to wait

endlessly. Then the key question is: what is(are) the

rule(s) to select the “right” time? Based on the data

analysis of QQXuanfeng, we employ a combination of

three rules as follows.

• After receiving a downloading request, if QQXu-

anfeng cannot download any part of the requested file in

five minutes, the downloading request is judged to have

failed. This rule is confirmed by our sampling measure-

ments indicating that if QQXuanfeng cannot download

any part of the requested file in five minutes, QQXuan-

feng is very likely (the probability is 97.3%) to fail in

downloading the entire file in the subsequent whole day.

In other words, the “startup status” of a downloading

task is a good indicator of a potential downloading fail-

ure.



1170 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

• QQXuanfeng periodically examines the download-

ing progress of each requested file. If the downloading

progress stagnates (i.e., does not change) in the latest

period, the downloading request is also judged to have

failed. The period is empirically set as one hour, be-

cause one hour is considered to be neither too long (thus

lagging in response) nor too short (thus being sensitive

to network dynamics).

• If QQXuanfeng cannot download a requested file

in a whole day, it recommends the user to give up. Ac-

cording to our records, 70% of the requested files are

retrieved in one day, illustrating that most users expect

QQXuanfeng to accomplish their downloading requests

in one day. As a result, we do not want users to wait

for longer than a whole day unless they accept this.

At last, Fig.5 plots the downloading success ratio of

QQXuanfeng in 14 days. The ratio always stays above

90% and is 92.2% on average.

1.00

0.95

0.90

0.85

0.80
2 4 6 8 1210 14

Day

D
o
w

n
lo

a
d
in

g
 S

u
c
c
e
ss

 R
a
ti
o

Fig.5. Downloading success ratio of QQXuanfeng.

4 Real-World Performance

4.1 Dataset

We use the running log of the QQXuanfeng sys-

tem in 14 days in Dec. 2013 to evaluate the real-world

performance of our design. The log includes the per-

formance information of nearly 10 million downloading

requests, involving 1.38 million unique files. 13.4% of

the requested files are HTTP/FTP files, and the re-

maining are P2P (BitTorrent/eMule) files. For each

downloading request, we record its user ID, file link,

file hash code, file type, file size, issue time, download-

ing duration time (of the downloader), retrieval dura-

tion time (of the user), cache hit status (1-hit, 0-miss),

cloud-based traffic, peer-assisted traffic, and so forth.

4.2 Metrics

• Data retrieval speed denotes the total data trans-

fer rate when a user retrieves his/her requested file from

the cloud and/or peering users. Specifically, the data

retrieval speed is calculated as:

cloud-based traffic + peer-assisted traffic

retrieval duration time
.

• Peer-assisted traffic portion denotes the portion of

peer-assisted traffic in the data retrieval process. This

portion represents to what extent the cloud bandwidth

burden is alleviated by utilizing the peer-assisted file

distribution.

• View startup delay denotes how long a user must

wait for the cloud to download his/her requested file.

For a downloading request, if the cloud cache hit status

is “1-hit”, the view startup delay is taken as 0; other-

wise, the view startup delay is regarded as the corre-

sponding downloading duration time of QQXuanfeng.

4.3 Data Retrieval Speed

Since the data retrieval speed is computed by di-

viding the file size (≈ the cloud-based traffic + the

peer-assisted traffic) by the retrieval duration time, in

this subsection, we first present the CDF of file size (in

Fig.6), the CDF of retrieval duration time (in Fig.7),

and the CDF of data retrieval speed (in Fig.8), and

then explore their relations.

0 1000 2000

File Size (MB)

Avg. = 390 MB

C
D

F

3000 4000

1.0

0.8

0.6

0.4

0.2

0

Fig.6. CDF of file size.

From Fig.6, we find that the average file size is 390

MB, and 25% of files are very small in size (< 8 MB).

Fig.7 illustrates that the average retrieval duration time

is 33 minutes. Besides, 76% of files are retrieved in

less than 30 minutes, and 93% of files are retrieved in



Zhen-Hua Li et al.: Towards Cost-Effective Cloud Downloading with Tencent Big Data 1171

less than 100 minutes. As shown in Fig.8, the average

data retrieval speed is 260 KBps (≈ 2.1 Mbps). 81%

of data retrieval speeds are higher than 37.5 KBps (=

300 Kbps) — the basic playback rate of online videos.

Nevertheless, still 19% of data retrieval speeds are less

than 300 Kbps. This is because the users are not all

located in the four major ISP networks in China, and

thus their data retrieval flows cross multiple ISP net-

works and are retarded by the “ISP barriers” (i.e., poor

inter-connectivity between different ISP networks).

0 50 100

Retrieval Duration Time (min)

Avg. = 33 Minutes

C
D

F

150 200

1.0

0.8

0.6

0.4

0.2

0

Fig.7. CDF of retrieval duration time.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1.0

Avg. = 260 KBps

Data Retrieval Speed (KBps)

C
D

F

Fig.8. CDF of data retrieval speed.

Moreover, we discover an approximate relation

among the average file size, the average data retrieval

speed, and the average retrieval duration time:

avg. file size (390 MB)

avg. data retrieval speed (260 KBps)

≈ avg. retrieval duration time (33 min). (1)

This is a useful equation implying that if we take

certain measures (e.g., investing in more uploading

servers or deploying more uploading servers in more

ISP networks) to further enhance the data retrieval

speed, the retrieval duration time is expected to de-

crease inverse-proportionally. Thereby, we can find a

proper trade-off point between the data retrieval speed

and the retrieval duration time for future design.

4.4 Peer-Assisted Traffic Portion

When a user wants to retrieve a (popular) file,

he/she is first directed (by the tracker) to other on-

line users sharing the file for peer-assisted delivery. For

an unpopular file, the user can hardly find other on-

line users sharing the file, thereby we do not (need to)

consider unpopular files in this subsection. If the peer-

assisted delivery speed is unsatisfactory, QQXuanfeng

provides extra cloud bandwidth for further accelera-

tion. Fig.9 records the peer-assisted traffic portion cor-

responding to various numbers of online peers sharing

the file.

0 1~5 6~10 11~15 16~20 21~30 31~50 >50
0

0.2

0.4

0.6

0.8

1.0

Number of Online Peers Sharing the File

P
e
e
r-

A
s
si
st

e
d
 T

ra
ff
ic

 P
o
rt

io
n

Fig.9. Peer-assisted traffic portion.

As we expected, more online peers usually bring

about a larger peer-assisted traffic portion. When there

are over 50 online peers sharing the same file, almost all

the data (98%) is retrieved from peers, so that a “flash

crowd” caused by a highly popular file will not hap-

pen to the system. In total, when users retrieve popu-

lar files from QQXuanfeng, 78% of the network traffic

comes from peering users, thus effectively alleviating

the cloud bandwidth burden.

4.5 View Startup Delay

The view startup delay is effectively reduced owing

to the cloud cache. For a downloading request, if the

requested file is already in the cloud cache, the view

startup delay is just 0; otherwise, the view startup de-

lay is the corresponding downloading duration time of



1172 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

QQXuanfeng. Thus, we first present the CDF of down-

loading duration time (in Fig.10) and the CDF of down-

loading data rate (in Fig.11), and then calculate the

amortized view startup delay.

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1.0

Avg. = 290 min

Download Duration Time (min)

C
D

F

Fig.10. CDF of downloading duration time.

0 500 1000
0

0.2

0.4

0.6

0.8

1.0

Avg. = 69 KBps

Download Data Rate (KBps)

C
D

F

Fig.11. CDF of downloading data rate.

The average downloading duration time is 290 minu-

tes, and the average downloading data rate is 69 KBps

(= 0.55 Mbps). In Subsection 4.3, we discovered the

relationship (see (1)) among the average file size, the

average data retrieval speed, and the average retrieval

duration time. But this relationship does not hold re-

garding the downloading duration time and the down-

loading data rate:

avg. file size (390 MB)

avg. downloading data rate (69 KBps)

= 96 min

≪ avg. downloading duration time (290 min).

The reason is that most downloads have low data

rates in the common downloading way — note that ev-

ery downloader in the QQXuanfeng cloud downloads

files in the common way. In particular, 38% of down-

loading rates are less than 10 KBps, 58% less than

37.5 KBps (= 300 Kbps), and 70% less than the ave-

rage downloading data rate (69 KBps). As mentioned

in Subsection 3.1, the cloud cache hit ratio in QQXu-

anfeng is 87% on average, thereby the amortized view

startup delay = 87%× 0 + 13%× 290 min = 37.7 min.

5 Related Work

In the past 15 years, large-scale high-quality con-

tent distribution has been a hot research topic in both

industry and academia[13-15], especially in the state-of-

the-art techniques: CDN and P2P. Many researchers

have recognized that both CDN and P2P have their

limitations. Thus, they have proposed various novel

schemes by combining or optimizing CDN and P2P.

Hybrid CDN-P2P. On top of ChinaCache, the

biggest commercial CDN service provider in China, Yin

et al. developed a hybrid CDN-P2P live streaming sys-

tem named LiveSky[16], to incorporate the strengths of

both approaches: scalability of P2P and quality con-

trol capability of CDN. Although hybrid CDN-P2P

inevitably results in extra deployment complexity and

maintenance cost, LiveSky achieves a lower bandwidth

burden on the CDN network and a higher working ef-

ficiency of peer streaming for very popular videos (i.e.,

live TV shows). However, for unpopular videos, it is

still difficult and inefficient for few users to form a peer

swarm, and then the performance of LiveSky will be

similar to a common CDN.

P2SP (Server-Assisted P2P). Wu et al.[17] refo-

cused on the importance of servers in P2P stream-

ing and thus proposed the server-assisted P2P (or says

“P2SP”) streaming scheme. With a 7-month running

trace of a large-scale commercial P2P live TV stream-

ing system named UUSee 5○, they found that the to-

tal available bandwidth of the 150 dedicated streaming

servers could not meet the increasing demands of down-

loading bandwidth from hundreds of TV channels (a

TV channel can be seen as a very popular peer swarm),

although the total uploading bandwidth of peers also

increased with downloading demands. Thereby, they

proposed an allocation algorithm of server bandwidth

named Ration, which proactively predicts the minimum

server bandwidth demand of each channel and thus each

5○http://www.uusee.com, Sept. 2015.



Zhen-Hua Li et al.: Towards Cost-Effective Cloud Downloading with Tencent Big Data 1173

channel can be guaranteed with proper streaming qua-

lity. Ration has the similar shortcoming as LiveSky,

because every TV channel of UUSee can be seen as a

highly popular video. For unpopular videos, Ration will

work like the traditional client/server (C/S) scheme.

Open-P2SP and Cloud-P2P. A more open, power-

ful, and complicated P2SP content distribution scheme

(named “Open-P2SP”) is presented in [18]. It inte-

grates various third-party servers, contents, and data

transfer protocols all over the Internet into a huge-scale

and federated P2SP platform. As a result, Open-P2SP

can overcome the limitations of traditional P2SP in

both content abundance and server bandwidth. Fur-

ther, if we regard all the third-party servers in an Open-

P2SP system as a “cloud of clouds”, Open-P2SP can

be seen as a hybrid Cloud-P2P content distribution

scheme. The key strength of Cloud-P2P lies in the

so-called bandwidth multiplier effect. In order to maxi-

mize the overall bandwidth multiplier effect of a Cloud-

P2P system, Li et al.[19] constructed a fine-grained per-

formance model and developed a fast-convergent itera-

tive algorithm named FIFA.

Smart AP-Assisted Cloud Downloading. In the

recent two years, smart WiFi AP (access point,

also known as home router) devices have quickly

gained enormous popularity in China, e.g., HiWiFi 6○,

MiWiFi 7○, and Newifi 8○. A traditional AP only for-

wards data packets for its connected end devices, while

a smart AP can also pre-download and cache files on an

embedded/connected storage device (e.g., an SD card,

a USB flash drive, or a hard disk drive). In other words,

smart APs can be used by people for “offline download-

ing”. Li et al.[20] made a comparative study of cloud

downloading and the smart AP-based offline download-

ing. They found that the cloud and the smart APs are

complementary, while also being subject to distinct per-

formance bottlenecks. Thereby, they designed a smart

AP-assisted cloud downloading middleware called ODR

(Offline Downloading Redirector) to help users achieve

the best expected performance.

Xunlei Cloud Download System. To our knowledge,

Xunlei is the biggest cloud download system of China

at present. Unfortunately, until now there have been

very few formal publications on its technical design or

performance measurement, thus we can only obtain in-

formation from its web site and news media reports.

Similar to QQXuanfeng, Xunlei also offers six levels

(VIP1∼VIP6) of QoS for its users. QQXuanfeng gene-

rally allocates cloud storage space to its users in unit of

5 GB, because 5 GB is often the approximate size of a

common TV play series, which we guess is also the rea-

son for Xunlei’s allocation scheme. The differences be-

tween Xunlei and QQXuanfeng are mainly three folds.

• Xunlei allocates “1 PB” of cloud storage space to

its VIP4∼VIP6 users. “1 PB” seems astonishing and

incredible, since a common Internet user is unlikely to

have 1 PB of local storage. In fact, “1 PB” just means

that Xunlei has built a large cloud cache, and the cache

hit ratio is extremely high. As a result, Xunlei is con-

fident in satisfying almost all the download requests of

its VIP4∼VIP6 users.

• Xunlei sets the “maximum retrieval bandwidth”

(i.e., the maximum data retrieval speed) for its users.

On the contrary, QQXuanfeng does not set such limita-

tion, and it always tries to accelerate its users’ retrieval

bandwidth as high as possible.

• The monthly charge of Xunlei increases linearly

with the user level. Differently, QQXuanfeng charges

its users at all levels the same (except for the “Trial”

users). In order to get their level upgraded, the users of

QQXuanfeng need to be more active (e.g., stay longer

online) and more contributive (e.g., share more data

with others).

6 Conclusions

In this paper, we reflected on the implementation

techniques of the cloud downloading scheme, based on

big data from a large-scale commercial cloud download-

ing system named QQXuanfeng. Although the scheme

seems simple and straightforward, its real-world design

involves complicated and subtle trade-offs between de-

ployment cost and user experience. We addressed these

design trade-offs from a practical, cost-effective per-

spective. Real performances of QQXuanfeng validate

the efficacy and efficiency of our design.

References

[1] Liu Y, Guo L, Li F, Chen S. An empirical evaluation of bat-

tery power consumption for streaming data transmission to

mobile devices. In Proc. the 19th ACM-MM, Nov.28-Dec.1,

2011, pp.473-482.

[2] Chen G, Li Z. Peer-to-Peer Network: Structure, Applica-

tion and Design. Tsinghua University Press, Sep. 2007. (in

Chinese)

6○http://www.hiwifi.com, Sept. 2015.
7○http://www.miwifi.com, Sept. 2015.
8○http://www.newifi.com, Sept. 2015.



1174 J. Comput. Sci. & Technol., Nov. 2015, Vol.30, No.6

[3] Liu Y, Xiao L, Liu X, Ni L M, Zhang X. Location awareness

in unstructured peer-to-peer systems. IEEE Transactions

on Parallel and Distributed Systems, 2005, 16(2): 163-174.

[4] Wen Y, Zhu X, Rodrigues J, Chen C. Cloud mobile media:

Reflections and outlook. IEEE Transactions on Multime-

dia, 2014, 16(4): 885-902.

[5] Huang Y, Li Z, Liu G, Dai Y. Cloud download: Using cloud

utilities to achieve high-quality content distribution for un-

popular videos. In Proc. the 19th ACM-MM, Nov.28-Dec.1,

2011, pp.213-222.

[6] Ao N, Xu Y, Chen C, Guo Y. Offline downloading: A non-

traditional cloud-accelerated and peer-assisted file distribu-

tion service. In Proc. the 4th CyberC, Oct. 2012, pp.81-88.

[7] Zhou Y, Fu Z, Chiu D M, Huang Y. An adaptive cloud

downloading service. IEEE Transactions on Multimedia,

2013, 15(4): 802-810.

[8] Li Z, Huang Y, Liu G, Wang F, Zhang Z L, Dai Y. Cloud

Transcoder: Bridging the format and resolution gap be-

tween Internet videos and mobile devices. In Proc. the 22nd

ACM NOSSDAV, Jun. 2012, pp.33-38.

[9] Hu H, Wen Y, Chua T, Li X. Towards scalable systems

for big data analytics: A technology tutorial. IEEE Access,

2014, 2: 652-687.

[10] Podlipnig S, Böszörmenyi L. A survey of web cache replace-

ment strategies. ACM Computing Surveys, 2003, 35(4):

374-398.

[11] Zhang J, Izmailov R, Reininger D, Ott M. Web caching

framework: Analytical models and beyond. In Proc. IEEE

Workshop on Internet Applications (WIA), Jul. 1999,

pp.132-141.

[12] Arlitt M, Cherkasova L, Dilley J, Friedrich R, Jin T.

Evaluating content management techniques for web proxy

caches. ACM SIGMETRICS Performance Evaluation Re-

view, 2000, 27(4): 3-11.

[13] Wu D, Hou Y T, Zhu W, Zhang Y Q, Peha J M. Streaming

video over the Internet: Approaches and directions. IEEE

Transactions on Circuits and Systems for Video Technol-

ogy, 2001, 11(3): 282-300.

[14] Li Z, Cao J, Chen G. ContinuStreaming: Achieving high

playback continuity of gossip-based peer-to-peer streaming.

In Proc. the 22nd IEEE IPDPS, Apr. 2008.

[15] Liu F, Shen S, Li B, Li B, Yin H, Li S. Novasky: Cinematic-

quality VoD in a P2P storage cloud. In Proc. the 30th IN-

FOCOM, Apr. 2011, pp.936-944.

[16] Yin H, Liu X, Zhan T, Sekar V, Qiu F, Lin C, Zhang H,

Li B. Design and deployment of a hybrid CDN-P2P system

for live video streaming: Experiences with LiveSky. In Proc.

the 17th ACM-MM, Oct. 2009, pp.25-34.

[17] Wu C, Li B, Zhao S. On dynamic server provisioning in mul-

tichannel P2P live streaming. IEEE/ACM Transactions on

Networking, 2011, 19(5): 1317-1330.

[18] Li Z, Huang Y, Liu G, Wang F, Liu Y, Zhang Z L, Dai Y.

Challenges, designs and performances of large-scale open-

P2SP content distribution. IEEE Transactions on Parallel

and Distributed Systems, 2013, 24(11): 2181-2191.

[19] Li Z, Zhang T, Huang Y, Zhang Z L, Dai Y. Maximizing the

bandwidth multiplier effect for hybrid Cloud-P2P content

distribution. In Proc. the 20th ACM/IEEE IWQoS, Jun.

2012, pp.20:1-20:9.

[20] Li Z, Wilson C, Xu T, Liu Y, Lu Z, Wang Y. Offline down-

loading in China: A comparative study. In Proc. the 15th

ACM IMC, Oct. 2015.

Zhen-Hua Li is an assistant profes-

sor at the School of Software, Tsinghua

University, Beijing. He received his B.S.

and M.S. degrees in computer science

and technology from Nanjing University

in 2005 and 2008 respectively, and

his Ph.D. degree in computer science

and technology from Peking University

in 2013. His research areas mainly consist of Internet

content distribution, mobile Internet, and cloud comput-

ing/storage.

Gang Liu received his B.S. and

M.S. degrees in computer science

and technology from the Huazhong

University of Science and Technol-

ogy, Wuhan. As a system architect,

he is leading the P2P and cloud

computing related technologies in

Tencent, particularly the QQXuanfeng

cloud downloading/transcoding sys-

tem.

Zhi-Yuan Ji is working at the High

Technology Research and Development

Center, Ministry of Science and Tech-

nology, Beijing. His research interests

mainly include the scientific man-

agement of information technologies,

computer application/software, and

embedded systems.

Roger Zimmermann is an asso-

ciate professor of computer science at

the National University of Singapore

(NUS). He received his Ph.D. degree in

computer science and engineering from

the University of Southern California in

1998. Among his research interests are

mobile video management, streaming

media architectures, distributed and

P2P systems, spatio-temporal data management and

location-based services.


