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a b s t r a c t

Peer-to-Peer(P2P) streaming has been proved a popular and efficient paradigm of Internet media
streaming. In some applications, such as an Internet video distance education system, there are multiple
media sources which work alternately. A fundamental problem in designing such kind of P2P streaming
system is how to achieve fast source switching so that the startup delay of the new source can be
minimized. In this paper, we propose an efficient solution to this problem. We model the source switch
process, formulate it into an optimization problem and derive its theoretical optimal solution. Then
we propose a practical greedy algorithm, named fast source switch algorithm, which approximates the
optimal solution by properly interleaving the data delivery of different media sources. The algorithm can
adapt to the dynamics and heterogeneity of real Internet environments. We have carried out extensive
simulations on various real-trace P2P overlay topologies to demonstrate the effectiveness of our model
and algorithm. The simulation results show that our proposed algorithm outperforms the normal source
switch algorithm by reducing the source switch time by 20%–30% without bringing extra communication
overhead. The reduction in source switching time is more obvious as the network scale increases.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

1.1. P2P streaming

The application level Peer-to-Peer(P2P) streaming has been
proved a popular and efficient decentralized paradigm of Inter-
net media streaming in recent years, e.g. P2P voice systems like
Skype [23] and UUCall [26], and P2P video systems like Joost [9],
PPLive [18], PPStream [19], UUSee [27] and so on.
Existing P2P streaming systems can be generally classified into

three categories: tree-based, gossip-based, and the hybrid. Tree-
based systems, e.g. Bayeux [34], SCRIBE [6], NICE [4], and ZIGZAG
[24], organize nodes into a multicast tree. The root of the tree is
the media source and data segments are always delivered from
parent to sons. Tree-based method can minimize redundancy of
data delivery and ensure full coverage of data dissemination, but
cannot well adapt to network dynamics because even the failure
of a single node will partition the tree to a forest. Besides, in the
multicast tree all leaf nodes are just consumers and contribute little
to other nodes. Taking these into consideration, SplitStream [5],
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CoopNet [15] and Chunkyspread [28] usemultiple trees to increase
the resilience and balance the load. However, multiple trees bring
much higher maintenance overhead.
Gossip-based systems, also referred to as mesh-based systems,

have beenproved to be effective and resilient especially in dynamic
and heterogeneous network environments. In a typical gossip
algorithm [8], every nodemaintains a limited number of neighbors
and sends a newly generated or received data segment to a random
subset of its neighbors. The random choice of data forwarding
targets achieves high resilience to random failures and enables
distributed operations. However, direct use of gossip for streaming
is ineffective because its random push may cause significant data
redundancy. As a result, existing gossip-based P2P streaming
systems, e.g. CoolStreaming [32], PeerStreaming [10], PALS [20],
AnySee [11] and PRIME [14], adopt a smart pull-based gossip
algorithm: every node periodically exchanges data availability
information with its neighbors and then retrieves required data
segments from a subset of its neighbors.
Recently, a hybrid architecture for P2P streaming has been

proposed to integrate themerits ofmulticast tree and gossipmesh,
e.g. Climber [16], mTreebone [29] and CliqueStream [3]. In these
systems, usually the stable nodes are organized into one or several
multicast tree(s), while the unstable nodes form a gossip mesh.
Nevertheless, there has been no practical P2P streaming system
which utilizes the hybrid method till now.
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1.2. Motivation

In this paper, we focus on the study of gossip-based P2P stream-
ing systems which have multiple sources that generate and dis-
seminate data segments to other nodes. For a multiple-source
system, the sources may work in parallel or in order (or says al-
ternately). Here are two application examples:

• Parallel sources: In an Internet TV system, there usually exist
several parallel streaming sources (i.e. the TV channels) work-
ing simultaneously to disseminate their TV contents.
• Alternate sources: In a video distance education system all sys-
tem members lying in different places can become the stream-
ing source, but there is usually only one source (i.e. the speaker)
at a time, so the sources work alternately.

So far, almost all the previous works focus on the research
of multiple-source P2P streaming systems with parallel sources.
However, during our system design practice which aims at up-
grading an Internet video distance education system from the
Client/Server architecture (the Human-Centered Multimedia E-
Learning System [13] has been developed and in use) to Peer-to-
Peer architecture, we are motivated to consider this special but
useful kind of P2P streaming system in which multiple sources ex-
ist and work alternately.
In a P2P streaming system with alternate sources, a fundamen-

tal problem is how to make the source switch process fast, that is
to say, how to minimize the startup delay of the new source. On
the contrary, the source switch problem is usually trivial for a P2P
streaming system with parallel sources, because in this scenario
the solution is straightforward. In a word, P2P streaming systems
with alternate and parallel sources have different requirements
on their source switch process and then need different solutions
to their source switch problem. Here are two examples indicating
their different requirements and solutions:

• Parallel sources: Suppose you are watching TV Channel 1 with a
P2P TV tool and suddenly you want to switch to TV Channel 2.
Just on receiving your switch command, the data scheduler of
the P2P TV software will at once stop receiving and displaying
any data from Channel 1. And then the data scheduler spends
all the available bandwidth in receiving data from Channel 2,
because Channel 1 has beenmeaningless to youwhen you send
the switch command.
• Alternate sources: Suppose you are attending a video distance
education class. Since every class member has his chance to
become the speaker, a source switch process often happens
between a teacher and his assistant, a teacher and a student,
a teacher and another teacher, and so on. In this situation, the
P2P data scheduler cannot start displaying the new source until
it has finished displaying the old source, so the solution to the
source switch problem is not straightforward any more.

Fig. 1 demonstrates a source switch process between alternate
sources S1 and S2. It is composed of three phases. (a) At first the old
source S1 was streaming its contents and every node was receiving
and playing the data segments of S1. (b) Then S1 stopped streaming
and the new source S2 started streaming. Both the data segments
of S1 and S2 were being disseminated amongst all the non-source
nodes. (c) Finally every node had finished the whole playback of
S1, and only the data segments of S2 were being disseminated in
the system. Obviously, the source switch problem is essentially
how to minimize the duration of phase (b). More specifically, we
need to design a proper source switch algorithm for every node to
minimize its playback start time (or says the startup delay) of S2, on
condition that a node can start its playback of S2 onlywhen 1) it has
finished the whole playback of S1, and 2) it has gathered sufficient
data segments of S2.
Fig. 1. A source switch process from the old source S1 to the new source S2 .

10

Fig. 2. A comparison of our fast switch algorithm and the normal switch algorithm.

1.3. Our work

To solve the above-mentioned source switching problem, we
first model the source switch process by capturing its essential
features. Then, we formulate the source switching problem into an
optimization problem, and derive the theoretical optimal solution
to this optimization problem. To address the more complicated
constrains in real Internet environments, we propose a practical
greedy algorithm, named fast switch algorithm, that approximates
the optimal solution by properly interleaving the data delivery of
the old source and the new source. This algorithm is embedded
into the architecture of a P2P streaming client software as a
bridge module between the data scheduler and rate controller. It
is triggered and executed by every node independently and it
relies on only local computation, which does not need any extra
communication. Therefore, this bridge module does not lead to any
negative impact on the performance in application layer.
We have done comprehensive simulations on various real-trace

overlay topologies, scaling from 100 to 10000 nodes, to demon-
strate the effectiveness of our algorithm. The simulation results
show that our proposed fast switch algorithm outperforms the
normal switch algorithm by reducing the source switch time by
20%–30%without bringing extra communication overhead, and the
reduction in source switching time is more obvious as the network
scale increases. The normal switch algorithm is a straightforward
and greedy data scheduling method which can be brought to mind
when one tries to handle the source switch process. It does not in-
terleave the data delivery of the old source and the new source.
Instead, it always gives priority to the data delivery of the old
source. The example in Fig. 2 shows the difference between the
two algorithms. The current node can receive 7 data segments per
scheduling period but there exist 10 available data segments, 5 seg-
ments from S1 and 5 segments from S2. Each algorithmarranges the
order of data delivery according to its own computation of the data
priorities, but wewould see their different results in the remaining
parts of this paper.
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Fig. 3. In the architecture of P2P streaming client software, the source switch
algorithm is embedded as a bridge module between the data scheduler and rate
controller.

In summary, the contribution of this paper lies in four aspects:
(1) To the best of our knowledge, we are the first to clarify the
existence and significance of the source switching problem of
P2P streaming. In particular, we distinguish alternate sources
from parallel sources in multi-source P2P streaming systems.

(2) To solve the source switching problem, we model the source
switch process, formulate it into an optimization problem, and
derive its theoretical optimal solution.

(3) We propose a practical greedy algorithm that approximates
the optimal solution by properly interleaving the data delivery
of the old source and the new source, so that this algorithm
can adapt to the dynamics and heterogeneity of real Internet
environments.

(4) We demonstrate the effectiveness of our proposed algori-
thm through comprehensive simulations on various real-trace
overlay topologies.
The rest of this paper is organized as follows. Section 2 intro-

duces the system background. Section 3 models the source switch
process. Section 4 presents our proposed fast source switch algo-
rithm and we evaluate its performance by simulation in Section 5.
Section 6 overviews the related work. Finally, we conclude the pa-
per in Section 7.

2. System background

A P2P streaming system is usually composed of two kinds of
nodes: (1) one or several rendezvous servers, and (2) a lot of client
nodes. A rendezvous server maintains a partial list of live client
nodes and its role is to help the client nodes join the system or
update the neighbor table. The real streaming media data is only
exchanged among the client nodes by using the P2P streaming
client software.
From Fig. 3 we can see that the architecture of P2P streaming

client software usually consists of the following key modules:
• P2P Overlay Manager behaves as the interface between the
local node and overlay network. It maintains and updates the
neighbor table.
• Data Scheduler gets the information about available data seg-
ments of neighboring nodes and arranges where and how to re-
trieve required data.
• Rate Controller monitors and estimates the receiving rates from
each neighboring node and the sending rates to each neighbor-
ing node. It collects rate information for the data scheduler and
gets feedback from the data scheduler.
In the architecture of P2P streaming client software, our pro-

posed source switch algorithm is embedded as a bridge module
between the data scheduler and rate controller. When a node de-
tects a source switch process, it activates the source switch mod-
ule, which coordinates the data scheduler and rate controller so
as to accelerate the switch process. And when the source switch
process finishes, the source switch module is set to inactive and
Fig. 4. The time sequence graph corresponding to our model of the source switch
process.

Table 1
Model parameters.

Param Description

S1 The old source.
S2 The new source.
Q The stream from S1 is played when every Q new consecutive

data segments of S1 have been gathered. If the number of new
consecutive data segments is not enough (≤Q ), the playback
would be stopped at once.

Q1 The number of undelivered data segments of S1 .
Qs The number of required data segments of S2 to start the playback

of S2 .
Q2 The number of undelivered data segments of S2 to start the

playback of S2 . Initially Q2 = Qs .
p The number of data segments being played per second.
I Total inbound rate of the local node. The rate is measured by the

number of data segments per second. I is a constant.
I1 The inbound rate allocated to receive data segments of S1 . I1 is

dynamically configured.
I2 The inbound rate allocated to receive data segments of S2 . I2 is

dynamically configured.
T1 The expected time to receive all the undelivered data segments

of S1 .
T ′1 The expected time to finish the playback of S1 .
T2 The expected time to receive the first Qs data segments of S2 .

behaves like a bypass channel between the data scheduler and rate
controller.

3. Model the source switch process

Since the P2P streaming systemwe consider is fully distributed,
a node does not know the source switch process until it discovers
data segments of a new source in its neighbors, that is to say, the
source switch algorithm assumes no pre-arranged knowledge on
the ordering of the sources’ sessions. When a node discovers the
new source it activates its source switch algorithm and re-executes
the switch algorithm per scheduling period until the node finishes
the whole playback of the old source. We assume there exists a
mechanism for synchronizing the old source S1 and the new source
S2, so that S2 knows when S1 stops generating streaming data. For
example, S1 can send a unicast message that contains the id of
S1’s ending segment to S2 after S1 sends its ending segment. When
receiving this message, S2 adds the id of S1’s ending segment into
S2’s data segments to notify the other nodes.
The parameters used in modeling the source switch process

are shown in Table 1. Considering the mathematical symbols’
obscurity, we use Fig. 4 to visualize these parameters. The stream
from S1 is played when every Q new consecutive data segments of
S1 have been gathered, but the stream from S2 cannot be started
to play until the first Qs data segments of S2 have been gathered.
The constraints on Q and Qs come from the basic requirements
of P2P live streaming to reduce playback jitter. In a practical P2P
streaming system, Qs is generally configured much bigger than
Q to guarantee a smooth startup of the new source. Because the
playback of S2must follow the playback of S1, T2 ≥ T ′1 is a necessary
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condition. The total inbound rate I is a constant for the local node
and I is divided into I1 and I2 to receive data segments of S1 and
S2 respectively. I1 and I2 are dynamically configured by the source
switch algorithm.
The problem of fast source switching can be formulated into the

following optimization problem:

Minimize T2
subject to the following conditions:

I = I1 + I2;

T1 =
Q1
I1
;

T ′1 = T1 +
Q
p
;

T2 =
Q2
I2
;

T2 ≥ T ′1.

The conditions can be rewritten as
T ′1 =

Q1
I1
+
Q
p
;

T2 =
Q2
I − I1

;

T2 ≥ T ′1.

So we get the following inequality

Q2
I − I1

≥
Q1
I1
+
Q
p
; (1)

which can be reformulated as

I21 +
(
p(Q1 + Q2)

Q
− I
)
I1 −

pIQ1
Q
≥ 0. (2)

Solving the above inequality, we have the following

I1 ≥ r1 or I1 ≤ r ′1; (3)

r1 =
I − p(Q1+Q2)

Q +

√
(
p(Q1+Q2)

Q − I)2 + 4pIQ1
Q

2
(4)

r ′1 =
I − p(Q1+Q2)

Q −

√
(
p(Q1+Q2)

Q − I)2 + 4pIQ1
Q

2
. (5)

Clearly r ′1 < 0 and thus I1 ≤ r
′

1 is not a feasible region. I1 ≥ r1 is
the only solution. Therefore, in order to minimize T2 we let I1 = r1
and I2 = r2 = I − r1, which is the theoretical optimal solution to
the optimization problem.

4. Fast source switch algorithm

The ideal condition for achieving the theoretical optimal so-
lution does not always hold because the real Internet environ-
ments usually involve more complicated constraints. For example,
I1 + I2 may be less than I when the total incoming data rate are
not enough to fill up the inbound rate of local node. This may be
caused by I1 ≤ O1 or I2 ≤ O2 or both (the meaning of O1,O2 will
be explained in the next paragraph). Therefore, we need a practical
source switch algorithm that can approximate the optimal solution
in dynamic and heterogeneous environments.
Fig. 5 demonstrates the local working environment of a

node. The local node has neighbors N1,N2,N3,N4 with outbound
rate o1, o2, o3, o4 respectively. Suppose O1 is the total available
outbound rate for the data delivery of S1 andO2 is the total available
outbound rate for the data delivery of S2, then the optimization
problem in Section 3 is changed to:
Fig. 5. The local working environment of a node.

Minimize T2
subject to the following conditions:

I1 + I2 ≤ I;
I1 ≤ O1;
I2 ≤ O2;

T1 =
Q1
I1
;

T ′1 = T1 +
Q
p
;

T2 =
Q2
I2
;

T2 ≥ T ′1.

Under the above conditions, the solution I1 = r1, I2 = r2 we get in
Section 3 can only hold when r1 ≤ O1 and r2 ≤ O2. r1 is defined in
the Eq. (4) and r2 = I − r1. Therefore, when r1 > O1 or r2 > O2
our target is tomaximize the inbound throughput of the local node.
Then the solutions become:
• Case 1: when r1 ≤ O1 and r2 ≤ O2,

Then I1 = r1, I2 = r2;
• Case 2: when r1 ≤ O1 and r2 > O2,

Then I1 = min(O1, I − O2), I2 = O2;
• Case 3: when r1 > O1 and r2 ≤ O2,

Then I1 = O1, I2 = min(O2, I − O1);
• Case 4: when r1 > O1 and r2 > O2,

Then I1 = O1, I2 = O2.

Now the critical problem is how to compute O1 and O2, more
exactly, to compute the two sets O1 and O2, where O1 = |O1|
and O2 = |O2|. Note that we measure the outbound rate O1,O2
with the number of data segments here (each data segment has
the same size).O1,O2 are recomputed for every scheduling period.
Data segments inO1 are in descending order of their priorities and
O2 is alike. Required parameters for our algorithm are listed in
Table 2.
Taking both the urgency and rarity of each data segment into

consideration, a data segment Di’s requesting priority is computed
through Eqs. (6) to (10).
Ri = max{Ri1 , Ri2 , . . . , Rini } (6)

ti =
idi − idplay

p
−
1
Ri

(7)

then

urgencyi =
1
ti
. (8)

Segment i’s rarity is the probability it will be replaced in all
its suppliers’ buffers, which we think is more reasonable than the
traditional computation rarityi = 1

ni
.

rarityi =
(pi1
B

)
×

(pi2
B

)
× · · · ×

(pini
B

)
. (9)
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Table 2
Parameters for our algorithm.

Param Description

τ Data scheduling period.
idi The id of data segment Di .
ni The number of neighbors that can supply the data

segment Di .
Rij The receiving rate of data segment Di from the jth

neighbor.
Ri The maximum receiving rate of data segment Di .
idplay The id of the data segment being played at this moment.
idend The id of the ending data segment of S1 .
idbegin The id of the beginning data segment of S2 . We set

idbegin = idend + 1.
ti The expected deadline left time of data segment Di .
B Buffer size, i.e. the number of data segments Buffer can

accommodate.
pij Data segment Di ’s position in the jth neighbor’s buffer.

The replacement strategy of Buffer is FIFO, and the
position is the distance from the tail of Buffer.

urgencyi The urgency of data segment Di , i.e. the probability of Di
to miss its deadline.

rarityi The rarity of data segment Di , i.e. the probability that Di
will be replaced in all its suppliers’ buffers.

priorityi The requesting priority of data segment Di . It takes both
urgency and rarity into consideration.

And finally,

priorityi = max{urgencyi, rarityi} (10)

because according to our observation, urgencyi and rarityi have
the same importance in deciding priorityi. priorityi cannot be a
weighted mean of the two metrics. Either a big urgencyi or a big
rarityi can easily lead to the loss of data Di.
Having got each data segment’s priority, our proposed fast

source switch algorithm is able to computeO1,O2 and then arrange
the data retrieval process, see Algorithm 1. The data segments are
sorted in the descending order of their priorities. Usually the data
segments of S1 and S2 are mixed in this order. Suppose the order is
like D1,D2,D3, . . . ,Dm. For a segment Di, there may exist several
neighbors who can supply it, and usually the neighbor who can
send it earliest will become Di’s supplier. But here we encounter a
conflict problemwhere two segments choose the same supplier, so
one of themneeds towait or choose another supplier. The problem
is: how to choose a proper supplier for every data segment so that
the number of segments missing deadlines or being replaced can
be the minimal? In fact, even a simple special case of this problem
is NP-hard (known as the Parallel machine scheduling problem [7]),
so we use a greedy algorithm trying to get high-priority segments
as early as possible. In this algorithm, the scheduler makes greedy
efforts to minimize the expected receiving time tmin of every
data segment. For a data segment Di, the scheduler checks all its
suppliers to find a proper supplier which can send Di earliest.
After getting O1 and O2, the computation of I1 and I2 follows

one of the four cases described formerly. And the data retrieval is
straightforward.

5. Performance evaluation

5.1. Simulation methodology

To evaluate the performance of our proposed source switch al-
gorithm, we perform simulations on 30 real-trace unstructured
P2P overlay topologies whose data was collected from Dec. 2000
to Jun. 2001 on dss.clip2.com (this DSS trace is a dataset which has
beenwidely used to analyze the performance of P2P systems [2,1]).
The data contains each node’s ID, IP, host name, port, ping time,
speed and so on, but we just use the ID, IP and ping time informa-
tion. The trace topologies we used scale from 100 to 10000 nodes.
Algorithm 1 Fast Source Switch Algorithm
1: Input:
2: Data segments D1,D2,D3, . . . ,Dm, in descending order of
priority;

3: Supplier set for each segment: S1, S2, S3, . . . , Sm;
4: Sending rate of node j: R(j);
5: Queuing time of node j: τ(j), initially τ(j) = 0;
6:
7: Step 1: Computing O1 and O2
8: for i = 1 tom do
9: set segment Di’s earliest receiving time tmin = ∞;
10: suppose Si contains k suppliers Si1 , Si2 , . . . , Sik ;
11: for j = 1 to k do
12: compute the expected transfer time of Di from Sij :

ttrans = 1
R(Sij )
;

13: if ttrans + τ(Sij) < tmin and ttrans + τ(Sij) < τ then
14: tmin ← ttrans + τ(Sij); supplieri ← Sij ;
15: end if
16: end for
17: if supplieri 6= null then
18: τ(supplieri)← tmin;
19: add Di to its corresponding set O1 or O2;
20: end if
21: end for
22:
23: Step 2: Arranging Data Retrieval
24: compute I1 and I2 according to O1, O2, r1 and r2;
25: retrieve the first I1 data segments of O1;
26: retrieve the first I2 data segments of O2;

They represent typical unstructured P2P topologies which have a
relatively small average node degree, e.g. the Gnutella overlay net-
work. Most topologies show a loose power-law distribution with
high deviation.
Since the average node degree of the P2P overlay topologies

we used is too small for media streaming, we add random edges
into each overlay to increase the connected neighbors in average.
According to our simulation experience, every node holds M = 5
neighbors is usually a good practical choice. The default streaming
rate is 300 Kbps (this is the data rate most Internet streaming
websites offer for normal video quality) and each data segment
contains 30 Kb, so the playback rate p = 300 Kb

30 Kb = 10. Each node
maintains a Buffer of 600 data segments, i.e. one minute of stream.
We randomly arrange inbound rate (from 300 Kbps to 1 Mbps) to
each node and let the average inbound rate be 450 Kbps, i.e. I ∈
[10, 33] and I = 15 in average. The arrangement of outbound
rate is alike. An exception is that the source node has zero inbound
rate and much larger outbound rate, which is consistent with the
common situation. The data scheduling period τ = 1.0 s.
For each simulation, we first let the system run for a sufficient

period of time to enter its stable phase (i.e. most nodes can contin-
uously playback the stream), and then stop S1 from generating new
data segments and meanwhile choose a new source S2 to generate
new data segments. Any node that can provide sufficient outbound
rate has chance to be the source. Therefore, in all the following
paragraphs the simulation time ‘‘0’’ means the time when S1 stops
and S2 starts. The stream from S1 is played once Q = 10 consecu-
tive data segments of S1 have been gathered. The total number of
required data segments of S2 to start the playback of S2 is Qs = 50,
i.e. 5 s of the streaming media.
We compare the performances of our fast switch algorithm

with the normal switch algorithm. The normal switch algorithm
works as follows: for a node nwhen its neighbors can supply data
segments of both S1 and S2, node n would retrieve data segments
of S1 in priority. If n still has available inbound rate after retrieving

http://www.dss.clip2.com
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data segments of S1, it would allocate the remaining inbound rate
to retrieve data segments of S2.

5.2. Metrics

We mainly use the following three metrics to evaluate the
performance of our fast switch algorithm:

(1) Average preparing time of S2 (= Average switch time) means the
average time for all nodes to prepare sufficient data segments
of S2 to start the playback of S2.

(2) Reduction ratio means the reduction ratio of average source
switch time by using the fast switch algorithm compared with
using the normal switch algorithm.

(3) Communication overhead: For every scheduling period each
node exchanges buffer information with its neighbors. Com-
munication overhead is defined as the ratio of communication
cost for buffer information exchange over the real communi-
cation cost for data segments transfer.

We also measure some supplementary metrics which can help
to understand the source switch process. The supplementary
metrics include:

• Undelivered ratio of S1 (=
Q1
Q0
) means the ratio of the undelivered

data segments of S1 currently (Q1) to the undelivered data
segments of S1 at time ‘‘0’’ (Q0).
• Delivered ratio of S2 (=

Qs−Q2
Qs
) means the ratio of the delivered

data segments of S2 (Qs−Q2) to the total required data segments
of S2 to start the playback of S2 (Qs).
• Unfinished number of S1 means how many nodes have not
finished gathering the undelivered data segments of S1.
• Prepared number of S2 means how many nodes have prepared
sufficient data segments of S2 to start the playback of S2.
• Average finishing time of S1 (=T ′1) means the average time for all
nodes to finish the playback of S1.

5.3. Simulation results in static environments

We first track the undelivered ratio of S1 and delivered ratio of
S2 of our fast switch algorithm and the normal switch algorithm
in a static network environment with 1000 nodes. From Fig. 6 we
can see that the normal switch algorithm gathers the undelivered
data segments of S1 more quickly than the fast switch algorithm
but prepares sufficient data segments to start the playback of S2
more slowly. Fig. 7 records the track of unfinished number of S1 and
prepared number of S2. By using the normal switch algorithm, the
last node finishes S1 at time 15 but prepares S2 at time 24. Note that
the last node that finishes S1 is usually different from the last node
that prepares S2. Meanwhile, by using the fast switch algorithm,
the last node finishes S1 and prepares S2 both at time 18. So we can
find the fast switch algorithm brings on a ‘‘compromise’’ between
the speeds of gathering data segments of S1 and S2, and thusmakes
the whole source switch process faster.
We further examine the average finishing time of S1 and aver-

age preparing time of S2 of overlay networks with different sizes,
ranging from 100 to 8000, working in static network environ-
ments. The bar graph in Fig. 8 illustrates the results. For each size
there are 4 bars corresponding to (from left to right): (1) the av-
erage finishing time of S1 by using the normal switch algorithm;
(2) the average finishing time of S1 by using the fast switch algo-
rithm; (3) the average preparing time of S2 by using the fast switch
algorithm; (4) the average preparing time of S2 by using the nor-
mal switch algorithm. The 4 bars of each size indicates that the fast
switch algorithm splits the difference between the average finish-
ing time of S1 and preparing time of S2 of the normal switch algo-
rithm, and thus makes the startup delay of the new source shorter.
Fig. 6. Ratio track in a static network with 1000 nodes.

Fig. 7. Number track in a static network with 1000 nodes.

Fig. 8. Avg finishing time of S1 and preparing time of S2 in static environments.

To illustrate the effectmore clearly, the average switch time and its
reduction byusing the fast switch algorithmare shown in Fig. 9.We
can see the reduction ratio lies between 0.2 and 0.3, and it tends to
increase when the network scale expands.
Besides, we measure the communication overhead of the two

algorithms in overlay networks with different sizes. The buffer can
accommodate B = 600 data segments, so we use 600 bits to
record the data availability. ‘‘1’’ indicates that the corresponding
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Fig. 9. Avg switch time and its reduction ratio in static environments.

Fig. 10. Communication overhead in static environments.

data segment is availablewhile ‘‘0’’ indicates that the data segment
is unavailable. The id of the first segment in the buffer is indicated
by 20 bits because the source will disseminate at most 10 ×
3600 × 24 = 864 000 ∈ (219, 220) data segments per day (one
hour is 3600 s, and one day is 24 h). Therefore, getting the buffer
information of one neighbor takes 620 bits’ communication cost in
total. Every data segment contains 30 Kb data of streaming. If every
node can get p = 10 required data segments from its neighbors
per second, i.e. the data delivery rate just matches the media play
rate, then the communication overhead is about 620×M

30×1024×10 =
5
495 ≈ 1%. But in the real applications, like simulation results
shown in Fig. 10, the communication overhead is a little larger
than 1% because data delivery rate of most nodes may not exactly
catch the media display rate. The communication overhead of the
fast switch algorithm is a bit lower than that of the normal switch
algorithm because the fast switch algorithm actually increases the
bandwidth utilization.

5.4. Simulation results in dynamic environments

To simulate a dynamic network environment, we randomly
choose 5% old nodes leave and 5% new nodes join per scheduling
period. We choose the number ‘‘5%’’ because it represents a typical
high churn rate in our simulations. When the churn rate is larger
than 5%, in the simulations we observe the overlay network has
difficulty in repairing itself and thus has a possibility of network
partition. When the churn rate is much smaller than 5%, the
Fig. 11. Ratio track in a dynamic network with 1000 nodes.

Fig. 12. Number track in a dynamic network with 1000 nodes.

simulation results in dynamic environments much resemble those
in static environments, indicating little difference. A new joined
node does not need to retrieve all the disseminated data segments
from each source, and it just requests the data segments being
played or will be played by its neighbors. That is to say, a new
joined node starts its media playback by following its neighbors’
current steps.
In general, simulation results in dynamic environments are

consistentwith the results in static environments. Fig. 11 tracks the
undelivered ratio of S1 and delivered ratio of S2 of our fast switch
algorithm and the normal switch algorithm in a dynamic network
environment with 1000 nodes. Fig. 12 tracks the unfinished
number of S1 and prepared number of S2. By using the normal
switch algorithm, the last node finishes S1 at time 17 but prepares
S2 at time 27. By using the fast switch algorithm, the last node
finishes S1 at time 21 and prepares S2 at time 22. The above-
mentioned two figures show that in dynamic environments the
fast switch algorithm still accelerates the source switch process.
We also examine the average finishing time of S1 and aver-

age preparing time of S2 of overlay networks with different sizes
working in dynamic network environments. The results in Fig. 13
indicate that in dynamic environments the fast switch algorithm
also splits the difference between the average finishing time of S1
and preparing time of S2 of the normal switch algorithm, and thus
makes the startup delay of the new source shorter. From Fig. 14we
can see the reduction ratio in dynamic environments lies between
0.18 and 0.28, which is similar to the reduction ratio in static envi-
ronments.
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Fig. 13. Avg finishing time of S1 and preparing time of S2 in dynamic environments.

Fig. 14. Avg switch time and its reduction ratio in dynamic environments.

Fig. 15. Communication overhead in dynamic environments.

Finally, the communication overhead of the two algorithms is
depicted in Fig. 15, which is still consistent with the communica-
tion overhead in static environments.

6. Related work

In general, two basic performance metrics, bandwidth and de-
lay, must be carefully considered when we design a network sys-
tem. It is also the case when designing a P2P streaming system. In
this section we overview the existing methods that aim at reduc-
ing the delay of P2P streaming, including the source-to-end delay,
end-to-end delay, client startup delay, data buffering delay and the
source switch delay.
• Data scheduling method: The data scheduling algorithm is a ker-
nel function in mesh-based P2P streaming systems. The Cool-
Streaming [32] system designs a ‘‘rarest-first’’ data scheduling
policy to assign data segments which own fewer suppliers with
higher priorities to retrieve. This policy can reduce the probabil-
ity ofwaiting for a rare data segment and thus lessen the source-
to-end delay. Xu et al. [31] consider the problem of media data
assignment for a multi-supplier P2P streaming session. Given
a requesting peer and a set of supplying peers with heteroge-
neous outbound rates, their algorithm, namedOTSp2p, computes
optimal media data assignments for P2P streaming sessions to
achieve minimum data buffering delay and thus to reduce the
client startup delay. But OTSp2p has very strict assumptions that
can hardly hold in a real P2P streaming system. The fast source
switch algorithmwe proposed in this paper belongs to the data
scheduling method.
• Pull–push method: Zhang et al. [33] observe that pure-pull
method in P2P streaming brings tremendous latency and thus
propose a hybrid push–pull system called GridMedia. They clas-
sify the streaming packets into pulling packets and pushing
packets. A pulling packet is delivered by a neighbor only when
the packet is requested, while a pushing packet is relayed by a
neighbor as soon as it is received. Themain goal of GridMedia is
to reduce the source-to-end delay with the cost of extra ‘‘push’’
communication overhead. The hybrid push and pull scheme
was also adopted by the new CoolStreaming system [12] (As
a contrast, the old CoolStreaming system [32] utilizes a pure-
pull data scheduling scheme). In the new CoolStreaming sys-
tem, when a node subscribes to a sub-stream by connecting to
one of its partners via a single request (pull), the requested part-
ner, i.e., the parent node, will continue pushing all data blocks
in need of the sub-stream to the requested node.
• Inter-overlay optimization: The P2P live streaming system Any-
See [11] employs an ‘‘inter-overlay optimization’’ mechanism
to reduce the source-to-end delay. In the AnySee system, each
node maintains one active streaming path set and one backup
streaming path set. Initially all streaming paths are managed
by the overlay manager. When the number of backup stream-
ing paths is less than a threshold, the inter-overlay optimization
algorithm is called to find appropriate streaming paths in the
global P2P network with the help of the mesh-based overlay.
When one active streaming path is cut off due to its poor QoS or
peer’s leaving, a newstreamingpath is selected from the backup
set.
• Reducing the minimum longest path: Ren et al. study how to op-
timize the source-to-end delay while meeting a certain stream-
ing rate requirement from the fact that the peer delay in a
mesh depends on its longest path through its parents to the
source [22]. They formulate the minimum delay mesh problem
which is NP-hard and propose a distributed algorithm which
makes continuous improvement on delay until someminimum
delay is reached.
• Reducing the topology mismatch: The construction of the peer
overlay in existing P2P systems has not considered the un-
derlying physical network topology and can cause serious
topology mismatch between the P2P overlay network and the
physical network. The topologymismatch problem brings great
link stress (unnecessary traffic) in the Internet infrastructure
and greatly degrades the system performance. Tu et al. address
this problem and propose a locality-aware P2P overlay con-
structionmethod called Nearcast [25], which builds an efficient
overlay multicast tree by letting each peer node choose physi-
cally closer nodes as its logical children.
• Enhancing the AS awareness: Through intensive Internet mea-
surements based on Border Gateway Protocol (BGP) routing
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tables and other dynamic information, Ren et al. observe that
the peer selections in the Skype systemdonot takeAutonomous
System (AS) topology into consideration and thus many re-
lay peer selections are suboptimal. Motivated by their mea-
surements and analysis, they propose an AS-aware peer-relay
protocol called ASAP [21], which can efficiently avoid or mit-
igate the inter-AS latency, so as to reduce the end-to-end de-
lay of VoIP streaming. Besides, the P4P platform [30] provides
portable plugins for P2P systems to detect the AS and ISP in-
formation. Its effect has been checked in Liveswarms [17], a
BitTorrent-based P2P live streaming system.

7. Conclusion

This paper studied the source switching problem in P2P stream-
ing systems and proposed an efficient solution tominimize the de-
lay in switching between alternate sources. We model the source
switch process, formulate it into an optimization problem, and
derive its theoretical optimal solution. Considering the dynamics
and heterogeneity of real Internet environments, we propose a
practical greedy algorithm that approximates the optimal solution
by properly interleaving the data delivery of the old source and
the new source. Comprehensive simulations on various real-traced
overlay topologies confirm the effectiveness of our fast source
switch algorithm.
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