
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll08/11llpp286-297
Volume 18, Number 3, June 2013

Coarse-Grained Cloud Synchronization Mechanism Design May Lead
to Severe Traffic Overuse

Zhenhua Li, Zhi-Li Zhang, and Yafei Dai�

Abstract: In recent years, cloud sync(hronization) services such as GoogleDrive and Dropbox have provided

Internet users with convenient and reliable data storing/sharing functionality. The cloud synchronization mechanism

(in particular, how to deliver the user-side data updates to the cloud) plays a critical role in cloud sync services

because it greatly affects the cloud operation cost (in terms of sync traffic) and user experience (in terms of

sync delay). By comprehensively measuring tens of popular cloud sync services, we find that their cloud sync

mechanisms differ greatly in sync performance and design granularity. Quite surprisingly, some very popular

services (like GoogleDrive and 115 SyncDisk) utilize a quite coarse-grained cloud sync mechanism that may lead

to severe traffic overuse. For example, updating 1-MB data may sometimes result in 260-MB sync traffic. In this

paper, we conduct a comparative study of various cloud sync mechanisms by analyzing their respective pros and

cons under different situations, unravel the pathological processes for their traffic overuse problems, and finally

provide insights/solutions for better choosing/designing a cloud sync service.

Key words: cloud storage; data synchronization; operation cost; user experience; design granularity

1 Introduction

In recent years, cloud synchronization services, such as
GoogleDrive, Dropbox, 115 SyncDisk[1], SugarSync,
Amazon CloudDrive, SkyDrive, and other services[2-13],
have provided Internet users with convenient and
reliable data storing/sharing functionality. Dropbox is
reported to possess more than 100 million users[14]

and 115 SyncDisk (also called the “China’s Dropbox”)
owns over 30 million users[15]. GoogleDrive was
released in 2012 and then quickly obtained a large user
group through both Google’s advertisements and its
seamless integration with the popular GoogleDocs[16]

service. Most cloud sync services require or encourage

� Zhenhua Li and Yafei Dai are with the Department of
Computer Science and Technology, Peking University, Beijing
100871, China. E-mail: flzh, dyfg@net.pku.edu.cn.
� Zhi-Li Zhang is with the Department of Computer Science

and Engineering, University of Minnesota — Twin Cities,
Minneapolis, MN 55455, USA. E-mail: zhzhang@cs.umn.edu.
�To whom correspondence should be addressed.

Manuscript received: 2013-02-25; accepted: 2013-03-01

their users to install a designated client (software) and to
assign a designated local folder (named “sync folder”).
The user can add a file into or directly modify a file in
this sync folder that is then automatically synchronized
with the cloud by the client.

Since most cloud sync services limit the per-user
quota of cloud storage space (e.g., a Dropbox user
usually owns around 2-GB free storage quota and a
GoogleDrive user owns 5-GB free storage quota), their
users would often modify existing files rather than
backup new files in their sync folders. Therefore, the
cloud synchronization mechanism (in particular, how
to deliver the user-side data updates to the cloud)
plays a critical role in cloud sync services because it
greatly affects the cloud operation cost (in terms of
sync traffic) and user experience (in terms of sync
delay). Specifically, on one hand, the data sync traffic
makes up a significant portion of the cloud operation
cost[17], so we hope the consumed network traffic for
synchronizing a data update can be as little as possible.
On the other hand, once a data update happens, we
hope the sync delay can be as short as possible (namely,

Zhenhua Li et al.: Coarse-Grained Cloud Synchronization Mechanism Design May Lead to Severe Traffic Overuse 287

a novel data update can be synchronized to the cloud
as soon as possible) to enhance the user experience1.
Furthermore, in practice we hope the sync process can
be as simple as possible, so that the client software
is easy to develop and the cloud platform is easy to
deploy. Unfortunately, one “hope” is often conflicting
with another (under specific application situations), as
demonstrated by the following typical mechanisms:
(1) Update-triggered Full-file Sync (UFS) in 115

SyncDisk: Once a data update happens, the full
content of the updated file f is delivered to the
cloud. Thereby, the sync delay is minimized to
several seconds when f is small and the sync
process is almost as simple as directly uploading
a file to the cloud (like using the FTP protocol).
However, the resulting sync traffic is proportional
to the size of f rather than the size of the data
update, so the sync delay is usually quite long
when f is large. Still worse, in the case of
incremental data updates (namely, when a file is
incrementally updated rather than updated in a
single pass), UFS may deliver numerous full files
to the cloud.

(2) Timer-triggered Full-file Sync (TFS) in
GoogleDrive: Once a data update happens,
a timer is set to watch whether there will be
following data updates in the subsequent T

seconds (e.g., T � 4.2 s for GoogleDrive). If yes,
this data update will be ignored; otherwise, the full
updated file is delivered to the cloud. Compared
with UFS, TFS can sometimes reduce the sync
traffic but obviously prolong the sync delay.

(3) Update-triggered Delta Sync (UDS) in Dropbox:
Once a data update happens, only the latest data
update(s) (i.e., the “delta” file, �f , between
the updated file f and the corresponding latest
cloud-stored file f 0) are delivered to the cloud.
Compared with UFS, UDS can significantly
reduce the sync traffic and shorten the sync delay
when f is large but �f is small. Nevertheless,
delta sync is more complicated than full-file sync,
since the delta sync process involves at least three
steps[18]: (a) the client retrieves the metadata of
f 0 from the cloud; (b) the client computes the
“delta”[19] (or says “binary diff”[20]) file between

1Generally speaking, the user is aware of (or sensitive to) the
sync delay because he can notice it from the client status or
notification, but unaware of the sync traffic because no cloud
sync client tells the user about the traffic.

f and f 0; and (c) the client delivers the “delta”
file to the cloud.

(4) Timer-triggered Delta Sync (TDS) in SugarSync:
TDS is similar to TFS except that only data
updates are delivered to the cloud, so TDS can also
significantly reduce the sync traffic and shorten the
sync delay when the updated file is large but the
“delta” file is small. Nevertheless, TDS is more
complicated than both TFS and UDS.

(5) Manual or Periodical Sync (MPS) in Amazon
CloudDrive: The updated file or data updates are
delivered to the cloud only when the cloud sync
process is manually or periodically performed (the
period is usually configured as long as one hour,
one day, and so forth). In general, if equipped with
delta sync, MPS should be the most traffic-saving
way to use a cloud sync service, but the sync delay
becomes extremely long and it is inconvenient for
data sharing among multiple users.

By comprehensively measuring tens of popular cloud
sync services as listed in Table 1, we find that
their cloud sync mechanisms differ greatly in sync
performance and design granularity. In particular,
quite surprisingly, some very popular services (like
GoogleDrive and 115 SyncDisk) utilize a quite coarse-
grained cloud sync mechanism that may lead to severe
traffic overuse. Nowadays, users are employing cloud
storage services to do more and more “complicated”
things, such as collaborative editing[16, 21], database
storage[22, 23], and even media streaming[24, 25], that
involve frequent incremental data updates. As a simple
example, if we append 5 K random2 bytes to an existing
empty file in the GoogleDrive sync folder per 5 s until
the total appended bytes reach 1 MB, the resulting
sync traffic will be around 260 MB3. On handling the
same data update pattern, the resulting sync traffic is
around 186 MB for 115 SyncDisk. However, neither
GoogleDrive nor 115 SyncDisk has ever told its users

2To our knowledge, most cloud sync clients compress the updated
file or data updates before delivering it/them to the cloud, which
makes it quite inconvenient to figure out the real size of the
compressed file or data updates. To facilitate our computation,
the appended bytes are randomly generated so they can hardly
be compressed by the client before delivered to the cloud.

3Our Internet access bandwidth is 4 Mbps and the experiment
is performed by using the GoogleDrive client (version
1.2.3123.0250) in Minneapolis, MN, US in 2012. Besides, if
we use an existing non-empty file rather than an empty file, the
resulting sync traffic will be more than 260 MB.

288 Tsinghua Science and Technology, June 2013, 18(3): 286-297

Table 1 Classification of popular cloud sync services in
terms of their cloud sync mechanisms.

Cloud sync mechanism Cloud sync services
UFS: Update-triggered
Full-file Sync

115 SyncDisk[1], UbuntuOne,
Kanbox[4], Kuaipan[5], � � �

TFS: Timer-triggered
Full-file Sync

GoogleDrive, SkyDrive,
Baidu CloudDisk[3], � � �

UDS: Update-triggered
Delta Sync

Dropbox, 360 CloudDisk[8],
IDriveSync[7], Everbox[9], � � �

TDS: Timer-triggered
Delta Sync

SugarSync, � � �

MPS: Manual or Perio-
dical Sync

Amazon CloudDrive, Box[2],
SpiderOak, CrashPlan, � � �

to avoid generating such (frequent incremental) data
updates. Consequently, their users would be deeply
confused about the corresponding long sync delay
though they may not notice the vast sync traffic.

Moreover, even the delta sync mechanism may also
lead to non-negligible traffic overuse. For example, on
handling the aforementioned data update pattern, the
resulting Dropbox sync traffic is around 5.2 MB —
much more than 1 MB (i.e., the total size of appended
bytes) while much less than 260 MB or 186 MB (i.e.,
the sync traffic of GoogleDrive or 115 SyncDisk).

In this paper, we conduct a comparative study of
various kinds of cloud sync mechanisms. For each
mechanism, we mainly focus on the corresponding
most representative cloud sync service. In order to
better measure and understand the working principle
of each mechanism, we artificially generate multiple
special data update patterns. Thereby, we analyze their
respective pros and cons and unravel the pathological
processes for their traffic overuse problems.

Guided by the above knowledge, we provide
insights/solutions for better choosing/designing a cloud
sync service. For better choosing a cloud sync service,
as a brief summary, in Fig. 1 we visualize the sync
performances (mainly involving sync traffic and sync
delay) of the investigated cloud sync mechanisms under
different application situations. For better designing
a cloud sync service, we propose the novel “aTDS”
(adaptive Timer-triggered Delta Sync) mechanism,
which adaptively tunes its timer threshold Ti to match
the latest data update pattern (see Fig. 1) and thus
has good performance under almost all the application
situations. The efficacy of aTDS is confirmed by
both our Linux-version prototype implementation and
theoretical analysis.

Fig. 1 Sync performances of the cloud sync mechanisms
under different application situations. Here “frequent
incremental file addition” means a novel file is added to the
sync folder in an incremental manner.

2 Related Work

In the past few years, hundreds of cloud sync services
have been deployed all over the world, making the
topic of cloud sync service extremely hot and the
relevant market increasingly competitive. In particular,
the mainstream Internet companies (e.g., Google,
Microsoft, Amazon, Apple, Baidu, and Dropbox) seem
to be racing in the road of attracting and “sticking”
users, mainly by optimizing the sync performances and
thus enhancing the user experiences.

Four cloud sync services, i.e., Dropbox, Mozy,
CrashPlan, and Carbonite, are studied in Ref. [26] from
multiple perspectives including the backup (upload) and
restore (download) performances, backup data types
and restrictions, and so forth. The backup time is
found to be tightly related to the compressibility of
the file (because Mozy does not compress files before
delivering them to the cloud), the amount of intra- and
inter-account duplicate data, etc. On the other hand,
restore is often faster than backup due to the client’s
download/upload bandwidth asymmetry. Among the
four services, Dropbox behaves well in most aspects
while Mozy behaves the worst.

Nevertheless, a large-scale passive measurement[27]

of Dropbox reveals that its sync performance is
mainly driven by the distance between the clients
and Amazon S3, and short data updates coupled with
a per-chunk acknowledgment mechanism lead to a
bottleneck of transfer throughput. Moreover, an active

Zhenhua Li et al.: Coarse-Grained Cloud Synchronization Mechanism Design May Lead to Severe Traffic Overuse 289

measurement[28] further reveals that the sync delay
has become a potential performance bottleneck of
Dropbox — the sync delay of Dropbox increases as the
system scales, even often beyond the accepted level for
practical collaboration.

A comparative tool called “CloudCmp”[29] is
implemented to measure the performances of four
“backend” cloud storage systems: Amazon AWS
(including Amazon S3, SimpleDB, and SQS),
Microsoft Azure, Google AppEngine, and Rackspace
Cloud Servers. They are the supporting facilities
of some popular cloud sync services, e.g., Dropbox
employs Amazon S3 for its real data storage. Three
major metrics, i.e., operation response time, time
to consistency, and cost per operation, are used to
evaluate the performance. It is discovered that each
metric can vary significantly across different systems.
In particular, Amazon S3 is found to be more fit
for dealing with large data updates rather than small
(incremental) data updates, which is consistent with
our observation in Section 3.4. Besides, Bergen et
al.[30] pointed out the client-side perceived performance
primarily depends on the client’s download bandwidth
and the transfer bandwidth between the client and
Amazon S3, rather than the upload bandwidth of the
cloud. Consequently, designers of cloud sync services
must pay special attention to the client-side sync
performances and sync mechanisms.

There are still a number of issues that need to
be addressed in designing a cloud sync (storage)
service. For example, data segmentation is elaborated
in Ref. [31], data cache/proxy is explored in Ref. [32],
data consistency is investigated in Ref. [33], data de-
duplication is studied in Refs. [34, 35], and some
security and privacy issues are discussed in Refs. [26,
36]. These issues are out of the scope of this paper so
we will not dwell on them.

3 Comparative Study of Cloud Sync
Mechanisms

3.1 Preliminaries

In this section we conduct a comparative study of
various kinds of cloud sync mechanisms. For each
mechanism, we mainly focus on the corresponding
most representative cloud sync service. All the
experiments are performed by using the latest-version
Windows client software (except UbuntuOne that uses
a Linux client) as of August 2012 in Minneapolis, MN,

US. All the client software runs on the same machine
with a dual-core Intel CPU @2.26 GHz, a 2-GB RAM,
and a 5400-RPM, 250-GB hard drive. Our Internet
access bandwidth is around 4 Mbps (� 500 KB/s).
The communication packets involved in the cloud
sync process are captured by using the “Wireshark”
network protocol analyzer. For ease of reference, we
list the major parameters (with regard to the cloud
sync performance) as well as their basic explanations
in Table 2.

Table 2 Parameter list.

Parameter Description
n Number of data updates involved in a cloud sync

process.
ti Happening time of the i -th data update.
�ti Inter-update time between the i -th data update and

the .i+1/-th data update, that is to say, �ti D
tiC1 � ti .

�t Average inter-update time.
T Timer threshold used in a timer-triggered sync

mechanism. When �ti is shorter than T , the
i -th data update will be ignored; otherwise, the
updated file or undelivered data updates is/are
delivered to the cloud.

li Length of the (compressed) i -th data update.
l Average (compressed) data update length.
jfi j, jf 0i j,
j�fi j

When the i -th data update happens, the local
updated file is fi and the corresponding cloud-
stored file is f 0

i
. �fi is the “delta” between fi

and f 0
i

. Thus, jfi j is the size of fi , jf 0
i
j is the size

of f 0
i

, and j�fi j is the size of �fi .
di Sync delay of the i -th data update, that is, how

much time the cloud sync client needs to fully
deliver the i -th data update to the cloud since it
happens (at ti).

dtotal Total sync delay for all the data updates, that is,
how much time the cloud sync client needs to fully
deliver all the data updates to the cloud since the
first (0-th) data update happens. Note that dtotal ¤Pn�1

iD0 di in most cases.
m Number of data deliver events. For most cloud

sync services, not every data update can trigger
a data deliver event, so m 6 n. Only in a data
deliver event does the cloud sync client deliver an
updated file or data updates to the cloud.

TRj Sync traffic incurred by the j-th data deliver event.
TRtotal Total sync traffic, that is, TRtotal D

Pm�1
jD0 .TRj /.

TRreal Real data update traffic that denotes the real size
of all the (compressed) data updates.

˛ Ratio of the total sync traffic over the real data

update traffic, that is, ˛ D
TRtotal

TRreal
.

290 Tsinghua Science and Technology, June 2013, 18(3): 286-297

In order to better measure and understand the
working principle of each mechanism, we artificially
generate multiple special data update patterns. Some
common patterns used for investigating each cloud sync
mechanism are listed as follows:
� 1 MB-adding pattern Adding a 1-MB RAR file

to the sync folder, in order to examine the basic
performance of the cloud sync mechanism on handling
a simple instant data update.
� 1 byte-appending pattern Appending 1 byte to an

existing 1-MB RAR file in the sync folder, in order to
recognize whether the cloud sync mechanism utilizes
full-file sync or delta sync.
�X KB/X s patterns Appending X K random bytes to

an existing empty file in the sync folder per X seconds
until the total appended bytes reach 1 MB, where X =
1, 2, 3, � � � , in order to figure out: (1) whether the cloud
sync service uses an update-triggered sync mechanism
or a timer-triggered sync mechanism, and (2) what is
the timer threshold, T , if a timer is used. Thus, for

each “XKB/Xs pattern”, n D
1000

X
, �ti D �t D X

seconds, li D l D X KB, and TRreal is kept as 1 MB
to make the comparisons among these different patterns
convenient. When we find T 2 .X;XC1/,X is further
tuned to X:1;X:2; � � � ; X:9 to figure out a more fine-
grained timer threshold.

Thereby, we analyze their respective pros and
cons under different application situations, and unravel
the pathological processes for their traffic overuse
problems.

3.2 UFS: Update-triggered Full-file Sync

UFS is utilized by 115 SyncDisk[1], UbuntuOne,
Kanbox[4], Kuaipan[5], VDisk[6], and Wuala. In this
subsection we focus on 115 SyncDisk since it is the
most popular. First of all, we add a 1-MB RAR file
to the 115 SyncDisk sync folder and we find that the
resulting sync traffic is 1.07 MB and the resulting sync
delay is 18 s 4. Then we append 1 byte to this 1-MB
RAR file, still resulting in 1.07 MB sync traffic and 18 s
sync delay, which confirms that 115 SyncDisk employs
a full-file sync mechanism.

Second, we append 1 K random bytes to an existing
empty file in the 115 SyncDisk sync folder

4The 18 s’ sync delay looks longer than our expectation because
the 115 SyncDisk cloud is deployed in China while the
experiment is performed in US. When we repeat the experiment
in Beijing, China, the sync delay decreases to about 10 s.

per second, until the total appended bytes reach
1 MB (thus, TRreal D 1MB). The total sync traffic is

TRtotal D 533MB (thus, ˛ D
TRtotal

TRreal
D 533) and the

total sync delay is dtotal=2090 s. Obviously, although
the total added/appended bytes are both 1 MB, the
“1 KB/s pattern” brings much more sync traffic and
much longer sync delay compared with the “1 MB-
adding pattern”, indicating that UFS leads to severe
traffic overuse in the case of frequent incremental
data updates. Furthermore, we examine the sync
performances of 115 SyncDisk via multiple “X KB/X s
patterns” whereX = 2; 3; 4; � � � ; 10. The corresponding
sync traffic and sync delay are plotted in Fig. 2, from
which we can see that both TRtotal and dtotal decrease as
X increases but the traffic overuse is still significant.

Third, in order to unravel the pathological process for
the above traffic overuse problem, we analyze the time
series of the involved communication packets (mostly
TCP packets). Figure 3 depicts the simplified working
principle of UFS on handling frequent incremental data
updates. Once a data update happens, the corresponding
data deliver event is triggered (namely, m � n in Table

Fig. 2 Total sync traffic and sync delay of UFS (used by 115
SyncDisk) on handling “X KB/X s patterns”.

Fig. 3 Simplified working principle of UFS (used by 115
SyncDisk) on handling frequent incremental data updates.

Zhenhua Li et al.: Coarse-Grained Cloud Synchronization Mechanism Design May Lead to Severe Traffic Overuse 291

2); thus, multiple data deliver events can compete for
the user-side Internet access bandwidth at the same
time, and we have dtotal �

Pn�1
iD0 di . As for every

data deliver event, the corresponding full updated file is
delivered to the cloud and the cloud should replace the
previous updated file with the latest one. Consequently,
the abovementioned traffic overuse problem may also
bring heavy network traffic and disk read/write burdens
to the cloud.

3.3 TFS: Timer-triggered Full-file Sync

TFS is utilized by GoogleDrive, SkyDrive, Baidu
CloudDisk[3], etc. In this subsection we focus on
GoogleDrive since it is the most representative and
is expected to be the most popular. Similar to 115
SyncDisk, adding a 1-MB RAR file to the GoogleDrive
sync folder results in 1.11-MB sync traffic and 14-
second sync delay. However, we observe that during
the 14-second sync process, no communication packets
are sent or received in the first 4 s, which reminds
us that the data deliver event is intentionally delayed.
Besides, appending 1 byte to this 1-MB RAR file also
incurs 1.11-MB sync traffic and 14-second sync delay,
indicating that GoogleDrive also employs a full-file
sync mechanism.

The “1 KB/s pattern” brings very little traffic
(mainly coming from periodical client-cloud beacon
messages) to GoogleDrive before all the data updates
are finished — very different from the case of 115
SyncDisk where TRtotal D 533MB. After the total
1-MB bytes are appended, the “real” sync process
starts and the resulting sync traffic is nearly 1.2
MB. Moreover, we check the sync performances of
GoogleDrive via multiple “X KB/X s patterns” where
X D 2; 3; 4; � � � ; 10 and record their corresponding
sync traffic and sync delay in Fig. 4. For X D 2; 3

the sync performances are similar to that of “1 KB/s
pattern”, but forX D 4 the sync traffic grows to 22 MB.
When X D 5, the situation is totally different: the
generated data updates continuously trigger data deliver
events, and the resulting sync traffic is up to TRtotal D

260MB (thus, ˛ D 260) and the total sync delay is
dtotal D 1870 s. When X > 5, both TRtotal and dtotal

decrease asX increases but the traffic overuse is always
severe. As a result, we draw a conclusion that the timer
threshold of GoogleDrive should be T 2 .3 s; 5 s/ and
T is close to 4 s.

As illustrated in Fig. 5, the time series of
GoogleDrive communication packets (corresponding

Fig. 4 Total sync traffic and sync delay of TFS (used by
GoogleDrive) on handling “X KB/X s patterns”.

Fig. 5 Simplified working principle of TFS (used by
GoogleDrive) on handling frequent incremental data
updates.

to the “5 KB/5 s pattern”) exhibit that T � 4:2 s with
minor fluctuations in .3:9 s; 4:5 s/. Apart from the
timer, the basic working principle of GoogleDrive looks
like that of 115 SyncDisk.

3.4 UDS: Update-triggered Delta Sync

UDS is utilized by Dropbox, IDriveSync[7], 360
CloudDisk[8], Everbox[9], etc. In this subsection we
focus on Dropbox since it is the most popular. When
we add a 1-MB RAR file to the Dropbox sync folder,
the resulting sync traffic is 1.22 MB and the resulting
sync delay is 9.2 s. Then we append 1 byte to this 1-
MB RAR file, resulting in 38.2-KB sync traffic and 4-
second sync delay, which tells us that Dropbox employs
a delta sync mechanism.

The “1 KB/s pattern” brings about 23-MB sync traffic
to Dropbox, indicating that UDS leads to non-negligible
traffic overuse in the case of frequent incremental
data updates. Furthermore, we examine the sync
performances of Dropbox by using multiple “XKB/Xs
patterns”. The corresponding sync traffic and sync
delay are plotted in Fig. 6, from which we have two
observations: (1) the total sync traffic decreases as

292 Tsinghua Science and Technology, June 2013, 18(3): 286-297

Fig. 6 Total sync traffic and sync delay of UDS (used by
Dropbox) on handling “X KB/X s patterns”.

X increases, and (2) the total sync delay stays stably
between 1000 and 1020 s.

To explain the above two observations, we analyze
the time series of the Dropbox communication packets
and plot in Fig. 7 the simplified working principle of
UDS on handling frequent incremental data updates.
Once a data update happens, the Dropbox client first
checks whether there is an on-going data deliver event
— if yes, this data update will not trigger any data
deliver event and may be merged to its following data
update(s); otherwise, a data deliver event is triggered to
upload the undelivered data update(s) to the “clouds”.
Here we use “clouds” rather than “cloud” because
Dropbox hires Amazon’s S3 cloud for its real data
storage and meanwhile maintains a relatively small
“Dropbox cloud” for metadata indexing, client-cloud
beaconing, and so forth. As a result, it is quite possible
that multiple Dropbox data updates are merged into one
longer data update which then triggers one data deliver
event, so we have m < n when X is small and m D n

whenX is large, but a largerX always implies a smaller
m. As soon as all the data updates are finished, only one
(i.e., the last) data deliver event is triggered to upload
the last batch of undelivered data updates, so the total
sync delay is always slightly longer than 1000 s.

Fig. 7 Simplified working principle of UDS (used by
Dropbox) on handling frequent incremental data updates.

3.5 TDS: Timer-triggered Delta Sync

Among the tens of popular cloud sync services we
investigate, only SugarSync is found to utilize TDS.
Adding a 1-MB RAR file to the SugarSync sync folder
results in 1.07-MB sync traffic and 13-second sync
delay. Besides, appending 1 byte to this 1-MB RAR
file incurs about 60-KB sync traffic and 11-second sync
delay, indicating that SugarSync also employs a delta
sync mechanism.

Similar to GoogleDrive while different from
Dropbox, the “1 KB/s pattern” brings very little
traffic to SugarSync before all the data updates are
finished. Moreover, we check the sync performances
of SugarSync via multiple “XKB/Xs patterns” where
X D 2; 3; 4; � � � ; 10 and record their corresponding
sync traffic and sync delay in Fig. 8. For X D 2; 3; 4; 5
the sync performances are the same with that of the
“1 KB/s pattern”, but for X D 6 the sync traffic sharply
grows to 17.2 MB and for X D 7 the sync traffic
reaches the maximum 33 MB, illustrating that the
timer threshold (T) of SugarSync is close to 6 s. When
X > 7, the sync traffic decreases as X increases but
the traffic overuse is still non-negligible. On the other
hand, the total sync delay is quite stable between 1000
and 1050 s.

As shown in Fig. 9, the basic working principle of
TDS looks like that of UDS except for the timer. As a
matter of fact, the sync process of SugarSync is slightly
complicated than that depicted in Fig. 9. On handling
a series of incremental data updates, SugarSync always
delivers the first data update to the cloud without delay
— in other words, the “timer” of SugarSync does not
have effect on the first data update. Consequently, if
the user generates just a single data update, he will
see the sync process starts instantly and thus the user

Fig. 8 Total sync traffic and sync delay of TDS (used by
SugarSync) on handling “X KB/X s patterns”.

Zhenhua Li et al.: Coarse-Grained Cloud Synchronization Mechanism Design May Lead to Severe Traffic Overuse 293

Fig. 9 Simplified working principle of TDS (used by
SugarSync) on handling frequent incremental data updates.

experience is satisfactory. But for the second, third, and
subsequent data updates, SugarSync will manage them
according to its timer threshold.

3.6 MPS: Manual or Periodical Sync

MPS is utilized by Amazon CloudDrive, Box[2],
IDrive, SpiderOak, CrashPlan, Evernote, Youdao Cloud
Note[10], CloudMe[11], QQ Cloud Disk[12], DBank[13],
etc. Considering Amazon’s pioneering role in cloud
computing and storage, we take Amazon CloudDrive as
a typical example in this subsection. First, manually
adding and then synchronizing a 1-MB RAR file to
Amazon CloudDrive brings about 1.11-MB sync traffic
and 10-second sync delay. Second, we append 1 byte
to this 1-MB RAR file and manually synchronize it
again to Amazon CloudDrive (to replace the old file),
and the resulting sync traffic is still 1.11 MB and the
sync delay is still 10 s. Therefore, Amazon CloudDrive
employs a full-file sync mechanism. On the other
hand, frequent incremental data updates usually have
no effect on MPS because the local sync folder cannot
be automatically and timely synchronized to the cloud
by the client. Generally speaking, MPS is only suitable
for applications that do not care about sync delay.

4 Insights/Solutions for Better Choosing/
Designing a Cloud Sync Service

Guided by the knowledge obtained from the above
comparative study, in this section we provide
insights/solutions for better choosing/designing a
cloud sync service.

4.1 Choosing an appropriate cloud sync service

For better choosing a cloud sync service, Fig. 1 has
visualized the sync performances (mainly involving
the sync traffic and sync delay) of UFS, TFS, UDS,
TDS, and MPS under different application situations.
Besides, we list more detailed application scenarios for

the existing cloud sync mechanisms in Table 3. Here
“situations” emphasize the data update patterns while
“scenarios” emphasize the specific things, issues or
services.

First of all, MPS is only suitable for those situations
that do not care about sync delay, e.g., file backup.
Although MPS might be the easiest to implement, its
application scenario is too narrow and thus a common
cloud sync service should try to avoid using MPS.

UFS is fit for instant file addition (e.g., picture/music/
immutable file storing or sharing), rather than file
modification (e.g., document editing and system log
appending) or incremental file addition (e.g., file
downloading). However, none of the popular cloud
sync services (UbuntuOne and others in Refs. [1, 4, 5])
that utilize UFS have ever mentioned to their users
about this. Thereby, their users would often edit a
document in or download a file to the sync folder, and
then be deeply confused about the resulting long sync
delay (though they may not notice the vast sync traffic).
In most cases, the sync performance of TFS is similar
to that of UFS. Only in the case of a specific frequent
incremental file addition does TFS work better than
UFS, e.g., when GoogleDrive handles the “XKB/Xs
patterns” with X 6 4 (refer to Fig. 4).

UDS can well handle infrequent incremental file
modifications like document editing and system log
appending, because it only delivers the “delta” file to

Table 3 Appropriate application situations and scenarios
for the existing cloud sync mechanisms.

Mechanism App situations App scenarios

MPS Sync delay
tolerant situations

0 File backup

UFS Instant file
addition

0

1 Picture/music/
immutable file storing
or sharing

TFS
Specific frequent
incremental file
addition

0 1

2 File downloading
(partially)

UDS
Infrequent
incremental file
modification

0 1

3 Document editing
4 System log append

TDS
Specific frequent
incremental file
modification

0 1 2 3 4

5 Database updating
(partially)

6 Sensor network data
collecting (partially)

294 Tsinghua Science and Technology, June 2013, 18(3): 286-297

the cloud. But in the case of frequent incremental
file modifications (e.g., database updating and sensor
network data collecting), UDS would continuously
upload numerous data updates to the cloud, resulting
in abundant “overhead traffic” (including the traffic of
DNS query, TCP/HTTP/HTTPS connection setup and
maintenance, metadata retrieval, client-cloud beacon,
etc.) that far exceeds the real size of data updates
(namely, TRtotal � TRreal). By moderately delaying
the sync process of every data update, TDS can
effectively overcome the abovementioned drawback of
UDS under specific situations (compare Fig. 6 with
Fig. 8). Unfortunately, among all the popular cloud
sync services we have investigated in this paper, only
SugarSync is found to utilize TDS, possibly because
TDS is more complicated than others and is thus more
difficult to implement.

4.2 aTDS: adaptive Timer-triggered Delta Sync
mechanism

The above subsection reveals that none of the existing
cloud sync mechanisms can well handle all the data
update patterns. For better designing a cloud sync
service, we propose the novel “aTDS” (adaptive Timer-
triggered Delta Sync) mechanism, an enhanced version
of TDS. Different from TDS that generally adopts a
constant timer threshold T , aTDS adaptively tunes its
timer threshold Ti to match the latest data update pattern
and thus has good performance under almost all the
application situations. Specifically, Ti is tuned in an
iterative manner:

Ti D min .˛ � Ti�1 C ˇ ��ti�1 C ; Tmax/ (1)

where the weight constants ˛; ˇ 2 .0; 1/ and ˛Cˇ D 1,
 is a small constant that guarantees Ti to be slightly
longer than �t in a small number of iteration steps5,
and Tmax is also a manually configured constant
denoting the upper bound of Ti . When the i -th data
update happens (at ti), we first get the latest inter-update
time �ti�1 D ti � ti�1, and then compute Ti according
to Eq. (1). If the subsequent data update (i.e., the
.i C 1/-th data update) happens in Ti seconds (namely,
�ti < Ti), the i -th data update will be ignored;
otherwise, a novel data deliver event is triggered to
upload the undelivered data updates to the cloud.

Typically, we set ˛ D ˇ D 0:5 so that the “historical”
5If we do not use (i.e., D 0), in many cases Ti can approach
�t but always stay below �t , and then aTDS has little effect in
reducing the excessive sync traffic.

information (Ti�1) and the “up-to-date” information
(�ti�1) are equally weighted in computing Ti . For
convenience, the small constant is also set as 0.5.
Besides, Tmax is configured as 10 s in order to restrict
Ti within an acceptable range. Therefore, if SugarSync
utilized aTDS rather than its original TDS with T � 6 s,
on handling the “7 KB/7 s pattern”, the resulting sync
traffic would be close to 1 MB rather than the original
33 MB (refer to Fig. 8). More in detail, the ti and Ti

series should be like this:
t0 D 0; t1 D 7; t2 D 14; t3 D 21; � � � ; tn D 7nI

T0 D 0; T1 D 4; T2 D 6; T3 D 7; T4 D 7
1

2
; T5 D

7
3

4
; T6 D 7

7

8
; T7 D 7

15

16
; � � � ; Tn D 8 �

1

2n�3
:

As a result, only the first four data updates can trigger
separate data deliver events and all the other data
updates will trigger only one data deliver event at last.
Moreover, it is easy to discover that Ti can converge
to slightly longer than the latest inter-update time in
several iteration steps (which will be formally proved
later).

To evaluate the practical efficacy of aTDS, we
implement its Linux-version prototype by utilizing the
open-source data synchronization tool rsync and the
Linux kernel API inotify. rsync synchronizes files or
folders from one location to the other in a “delta sync”
manner, and inotify reports data updates (with regard
to a file or a folder) to user applications in a “real
time” manner. As depicted in Fig. 10, one client
PC (locating at a common apartment in Minneapolis,
US) and one cloud server (locating at the campus
network of University of Minnesota in Minneapolis) are
employed in our prototype implementation. First of
all, a rsync daemon process regarding to the cloud-
side sync folder is started and then keeps running in
the cloud server, and aTDS invokes the system call
inotify add watch(. . .) to monitor every data update
regarding to the client-side sync folder. Then, aTDS
can directly and instantly obtain the information of

Fig. 10 Prototype implementation of aTDS.

Zhenhua Li et al.: Coarse-Grained Cloud Synchronization Mechanism Design May Lead to Severe Traffic Overuse 295

every data update — the information includes the path
of the updated file, data update time, data update
type (e.g., file modification, attribute modification, file
creation and deletion), and so forth. Once a data update
happens, its information is used by aTDS to compute
�ti and Ti . If there is no subsequent data update in Ti

seconds (�ti > Ti), the undelivered data updates are
synchronized to the cloud server by using rsync.

When aTDS deals with the data update patterns
described in Section 3.1, the “1 MB-adding pattern”
results in 1.05-MB sync traffic and 6-second sync delay,
and the “1 byte-appending pattern” incurs 12.7-KB sync
traffic and nearly 2-second sync delay. Besides, as
plotted in Fig. 11, each “XKB/Xs pattern” (X D

1; 2; 3; � � � ; 10) brings less than 1.1-MB sync traffic and
the total sync delay is very close to 1000 s.

In practice, the data update pattern is usually more
complicated than an “XKB/Xs pattern” and often
exhibits a “hybrid” inter-update time distribution (e.g.,
as depicted in Fig. 12). Then we can formally prove
that aTDS can still effectively reduce the number of data
deliver events and thus reduce the sync traffic.

Theorem 1 Suppose a hybrid data update pattern
P consists of m basic data update patterns and each
basic pattern Pi (i D 0; 1; 2; � � � ; m � 1) is composed
of ni data updates with the same inter-update time �i

(usually, �i < Tmax). When aTDS is applied, at mostPm�1
iD0 log.�i C 1/ data deliver events will be triggered.
Proof Let Ti;k denote the k-th timer threshold in

the i -th basic data update pattern. First, we consider

Fig. 11 Sync traffic and delay of aTDS on handling
“X KB/X s patterns”.

Fig. 12 A “hybrid” data update pattern.

P0 that comprises n0 data updates with the inter-update
time �0. According to Eq. (1) and because �0 < Tmax

(i.e., �0C 1 6 Tmax), we have the following T0;k series:

T0;0 D 0; T0;1 D
1

2
.�0 C 1/; T0;2 D

3

4
.�0 C 1/;

T0;3 D
7

8
.�0 C 1/; T0;4 D

15

16
.�0 C 1/; � � � ;

T0;k D .1 �
1

2k
/.�0 C 1/; � � � ;

T0;n0�1 D .1 �
1

2n0�1
/.�0 C 1/:

Since a data deliver event is triggered only when T0;k 6
�0, that is .1� 1

2k /.�0C1/ 6 �0, we get 2k 6 �0C1. As
a result, k 6 log.�0C1/, that is to say, P0 can trigger at
most k0 D log.�0 C 1/ data deliver events — note that
k0 is independent of the number of data updates (n0)
contained in P0.

Next, we consider P1 that comprises n1 data updates
with the inter-update time �1 (�1 ¤ �0). Similarly, we
have the following T1;k series for P1:

T1;0 D
T0;n0�1

2
C
1

2
.�1C 1/; T1;1 D

T0;n0�1

4
C
3

4
.�1C

1/; � � � ; T1;k D
T0;n0�1

2kC1
C .1 �

1

2kC1
/.�1 C 1/; � � �

Since T0;n0�1 � �0 C 1 and let T1;k 6 �1, we get
2kC1 6 �1 � �0. If �1 < �0, k has no solution, which
means no data deliver event is triggered; otherwise, k 6
log.�1��0/�1< log.�1C1/. In general, P1 can trigger
at most k1 D log.�1 C 1/ data deliver events.

In the same way, Pi can trigger at most ki D log.�iC

1/ data deliver events; therefore, when aTDS is applied,
at most

Pm�1
iD0 ki D

Pm�1
iD0 log.�i C 1/ data deliver

events will be triggered. �

5 Conclusions and Future Work

Cloud sync service represents a new paradigm of
Internet-based data storing/sharing and people have
witnessed its quick and great success in industry.
Delving into tens of popular cloud sync services,
we find their kernel component, i.e., the cloud sync
mechanism, plays a critical role in cloud sync services
because it greatly affects the cloud operation cost and
user experience. Then we further figure out that
the existing cloud sync mechanisms can be generally
classified into five categories: UFS, TFS, UDS, TDS,
and MPS.

To obtain an in-depth understanding of these
mechanisms, in this paper we artificially generate
multiple special data update patterns to measure their

296 Tsinghua Science and Technology, June 2013, 18(3): 286-297

working performances (including sync traffic, sync
delay, etc.), illustrate their working principles, and
analyze their respective pros and cons. In particular,
we discover that even some very popular cloud sync
services utilize a quite coarse-grained cloud sync
mechanism that may lead to severe traffic overuse.
We unravel the pathological processes for their traffic
overuse problems and propose the novel “aTDS” cloud
sync mechanism (an enhanced version of TDS) that
has good performance under almost all the application
situations. The efficacy of aTDS is confirmed by both
our prototype implementation and theoretical analysis.

Still some future work remains. First, this paper
focuses on the “data-upload” cloud sync mechanism
(i.e., how to deliver the user-side data updates to the
cloud) rather than the “data-download” cloud sync
mechanism, because upload related operations (like file
addition and modification) are usually considered to
happen much more frequently than download related
operations (like file sharing). Investigation of the “data-
download” cloud sync mechanism may reveal more
interesting issues and valuable problems.

Second, for each cloud sync mechanism, we mainly
focus on the corresponding most representative cloud
sync service, and thus do not elaborate other services as
well as their mutual similarities and distinctions. For
example, both 115 SyncDisk and UbuntuOne utilize
the UFS mechanism but their concrete sync processes
and sync performances still have some differences. On
handling the “1 KB/s pattern”, 115 SyncDisk results
in 533-MB sync traffic and 2090-second sync delay
while UbuntuOne incurs 166-MB sync traffic and 1018-
second sync delay, because every data update triggers
a data deliver event as for 115 SyncDisk while several
data updates are merged to trigger a data deliver event
as for UbuntuOne.

Third, as to each cloud sync service, only the sync
performance and working principle of its PC client is
studied. As a matter of fact, many cloud sync services
also have their mobile clients that run on iPhone,
iPad, Android or Blackberry devices. For example,
the Dropbox PC client uses the UDS mechanism but
its Android client uses the MPS mechanism so as to
minimize the sync traffic. Furthermore, most cloud sync
services provide a Web-version user interface which
can be operated via a common Web browser. We
believe there remains considerable optimization space
in designing the mobile-version and Web-version cloud
sync services.

Finally, our aTDS prototype is implemented on top
of the Ubuntu Linux operating system but most popular
cloud sync clients run in the Windows environment.
Although many cloud sync services have developed
both Linux and Windows clients, the latter are usually
much more than the former. Therefore, we plan to
implement the Windows-version (and even the MacOS-
version) aTDS in the future.

Acknowledgements

This work was supported in part by the National Natural
Science Foundation of China (No. 61073015), the
National Key Basic Research and Development (973)
Program of China (No. 2011CB302305), and National
Key Projects of Science and Technology of China (No.
2010ZX03004-001-03).

References

[1] 115 SyncDisk, http://pc.115.com/box, 2012.
[2] Box.com, http://box.com, 2012.
[3] Baidu CloudDisk, http://pan.baidu.com, 2012.
[4] Kanbox, http://www.kanbox.com, 2012.
[5] Kingsoft Kuaipan, http://www.kuaipan.cn, 2012.
[6] VDisk, http://vdisk.me, 2012.
[7] IDriveSync, http://www.idrivesync.com, 2012.
[8] 360 CloudDisk, http://yunpan.360.cn, 2012.
[9] Everbox, http://www.everbox.com, 2012.
[10] Youdao Cloud Note, http://note.youdao.com, 2012.
[11] CloudMe, http://www.cloudme.com, 2012.
[12] QQ Cloud Disk, http://disk.qq.com, 2012.
[13] Huawei DBank, http://www.dbank.com, 2012.
[14] Dropbox is now the data fabric tying together devices

for 100M registered users who save 1B files a day,
http://techcrunch.com/2012/11/13/dropbox-100-million,
2012.

[15] The number of 115-NetDisk users has exceeded 30M,
http://www.donews.com/net/201203/1139233.shtm, 2012.

[16] GoogleDocs, http://docs.google.com, 2012.
[17] E. Zohar, I. Cidon, and O. Mokryn, The power of

prediction: Cloud bandwidth and cost reduction, in Proc.
2011 Annual Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM), Toronto, Canada,
2011.

[18] A. Tridgell and P. Mackerras, The rsync algorithm,
Computer Science Technical Report Series TR-CS-96-05,
Australian National University, Australia, 1996.

[19] Binary delta compression, http://en.wikipedia.org/wiki/
Binary delta compression, 2012.

[20] Binary diff wiki, http://en.wikipedia.org/wiki/Diff, 2012.
[21] DropboxTeams, http://www.dropbox.com/teams, 2012.
[22] Dropbox as database: Tutorial, http://blog.opalang.org/

2012/11/dropbox-as-database-tutorial.html, 2012.
[23] Tutorial: Use Dropbox to share a database or any file,

http://www.myquerybuilder.com/blog/2011/09/01/tutorial-
use-dropbox-to-share-a-database-or-any-file, 2012.

Zhenhua Li et al.: Coarse-Grained Cloud Synchronization Mechanism Design May Lead to Severe Traffic Overuse 297

[24] Y. He and Y. Liu, VOVO: VCR-oriented video-on-demand
in large-scale peer-to-peer networks, IEEE Transactions on
Parallel and Distributed Systems (TPDS), vol. 20, no. 4, pp.
528-539, 2009.

[25] X. Liao, H. Jin, Y. Liu, and L. Ni, Scalable live
streaming service based on inter-overlay optimization,
IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 18, no. 12, pp. 1663-1674, 2007.

[26] W. Hu, T. Yang, and J. N. Matthews, The good, the bad
and the ugly of consumer cloud storage, ACM SIGOPS
Operating System Review, vol. 44, no.3, pp. 110-115, 2010.

[27] I. Drago, M. Mellia, M. Munaf, A. Sperotto, R. Sadre,
and A. Pras, Inside dropbox: Understanding personal cloud
storage services, in Proc. 12th ACM SIGCOMM Internet
Measurement Conference (IMC), Boston, MA, USA, 2012.

[28] H. Wang, R. Shea, F. Wang, and J. Liu, On the
impact of virtualization on dropbox-like cloud file
storage/synchronization services, in Proc. 20th IEEE/ACM
Workshop on Quality of Service (IWQoS), Coimbra,
Portugal, 2012.

[29] A. Li, X. Yang, S. Kandula, and M. Zhang, CloudCmp:
Comparing public cloud providers, in Proc. 10th ACM
SIGCOMM Internet Measurement Conference (IMC),
Melbourne, Australia, 2010.

[30] A. Bergen, Y. Coady, and R. McGeer, Client bandwidth:
The forgotten metric of online storage providers, in
Proc. IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing (PacRim), Victoria, B.C.,
Canada, 2011.

[31] M. Vrable, S. Savage, and G. Voelker, Cumulus: Filesystem
backup to the cloud, in Proc. 7th USENIX Conference on
File and Storage Technologies (FAST), San Francisco, CA,
USA, 2009.

[32] M. Vrable, S. Savage, and G. Voelker, BlueSky: A cloud-
backed file system for the enterprise, in Proc. 10th USENIX
Conference on File and Storage Technologies (FAST), San
Jose, CA, USA, 2012.

[33] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. Mckelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci,
J. Haridas, C. Uddaraju, H. Khatri, A. Edwards, V.
Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. Fahim
ul Haq, M. Ikram ul Haq, D. Bhardwaj, S. Dayanand,
A. Adusumilli, M. McNett, S. Sankaran, K. Manivannan,
and L. Rigas, Windows azure storage: A highly available
cloud storage service with strong consistency, in Proc. 23rd
ACM Symposium on Operating Systems Principles (SOSP),
Cascais, Portugal, 2011.

[34] D. Harnik, B. Pinkas, and A. Shulman-Peleg, Side channels
in cloud services: Deduplication in cloud storage, IEEE
Security & Privacy, vol. 8, no. 6, pp. 40-47, 2010.

[35] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg,
Proofs of ownership in remote storage systems, in Proc.
18th ACM Conference on Computer and Communications
Security (CCS), Chicago, IL, USA, 2011.

[36] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber,
and E. Weippl, Dark clouds on the horizon: Using cloud
storage as attack vector and online slack space, in Proc.
20th USENIX Security Symposium, San Francisco, CA,
USA, 2011.

Zhenhua Li is a PhD candidate in
computer science and technology at Peking
University, Beijing, China. He was
also a joint PhD student in computer
science and engineering at the University
of Minnesota — Twin Cities, USA. His
current research areas mainly consist of
cloud computing/storage, Internet content

distribution, and peer-to-peer technologies. He has published
one book and over 25 technical papers in the above areas. He
is a member of the ACM, the ACM SIGMM, the IEEE-CS,
(Computer Society) and the CCF (China Computer Federation).

Zhi-Li Zhang received the BS degree
from Nanjing University, Jiangsu, China,
in 1986, and the MS and PhD degrees from
the University of Massachusetts, Amherst,
in 1992 and 1997, respectively, all in
computer science. In 1997, he joined
the Computer Science and Engineering
faculty with the University of Minnesota,

Minneapolis, where he is currently a professor. From 1987
to 1990, he conducted research with the Computer Science

Department, Aarhus University, Aarhus, Denmark, under a
fellowship from the Chinese National Committee for Education.
He has held visiting positions with Sprint Advanced Technology
Labs, Burlingame, CA; IBM T. J. Watson Research Center,
Yorktown Heights, NY; Fujitsu Labs of America, Sunnyvale,
CA; Narus Inc., Microsoft Research; INRIA, Sophia-Antipolis,
France; Universidad de Carlos III de Madrid and IMDEA
Networks. He is a co-recipient of three Best Paper Awards from
ACM SIGMETRICS, IEEE ICNP, and IEEE INFOCOM.

Yafei Dai is a professor at the Department
of Computer Science and Technology,
Peking University, Beijing, China. She
received her PhD degree in computer
science and technology at the Harbin
Institute of Technology, China. Her
research areas mainly include networked
and distributed systems, P2P computing,

network storage, and online social networks. She is a member
of the IEEE, the IEEE Computer Society, and the CCF (China
Computer Federation).

