
TSINGHUA SCIENCE AND TECHNOLOGY
I S S N l l 1 0 0 7 - 0 2 1 4 l l 0 1 / 1 1 l l p p 1 – 9
Volume 22, Number 1, February 2017

Towards a Full-Stack DevOps Environment (Platform-as-a-Service)
for Cloud-Hosted Applications

Zhenhua Li, Yun Zhang, and Yunhao Liu�

Abstract: If every programmer of cloud-hosted apps possessed exceptional technical capability and endless

patience, the DevOps environment (also known as Platform-as-a-Service, or PaaS) would perhaps become

irrelevant. However, the reality is almost always the opposite case. Hence, IT engineers dream of a reliable

and usable DevOps environment that can substantially facilitate their developments and simplify their operations.

Current DevOps environments include Google App Engine, Docker, Kubernetes, Mesos, and so forth. In other

words, PaaS bridges the gap between vivid IT engineers and stiff cloud systems. In this paper, we comprehensively

examine state-of-the-art PaaS solutions across various tiers of the cloud-computing DevOps stack. On this basis,

we identify areas of consensus and diversity in their philosophies and methodologies. In addition, we explore

cutting-edge solutions towards realizing a more fine-grained, full-stack DevOps environment. From this paper,

readers are expected to quickly grasp the essence, current status, and future prospects of PaaS.

Key words: cloud computing; Platform-as-a-Service (PaaS); DevOps; development; operation; environment

1 Introduction

Recent years have witnessed fundamental changes to
the IT industry via the emergence of cloud computing.
Cloud computing is widely recognized as having three
layers: Infrastructure-as-a-Service (IaaS), Platform-as-
a-Service (PaaS), and Software-as-a-Service (SaaS).
Among these three layers, IaaS systems (e.g., Amazon
Web Services and Microsoft Azure) offer basic
infrastructure utilities like Virtual Machines (VMs) and
object storage, and have received the most attention
from the IT market. As such, IaaS standardization
has matured. In contrast, there are a diversity of
SaaS systems available on line (e.g., Salesforce, Gmail,
and Office 365). As SaaS systems are closest to the

� Zhenhua Li, Yun Zhang, and Yunhao Liu are with the School
of Software, Tsinghua University, Beijing 100084, China. E-
mail: flizhenhua1983, hitzhangyun, yunhaoliug@gmail.com.
�To whom correspondence should be addressed.

Manuscript received: 2016-11-13; revised: 2016-12-07;
accepted: 2016-12-08

end users, most Internet users are familiar with them.
In between IaaS and SaaS are PaaS systems (e.g.,
Google App Engine, Google Borg, and Docker), which
connect the IaaS and SaaS systems. Although many
cloud users are unaware of the existence of PaaS, it
has recently been perceived as increasingly important
by cloud developers and operators[1]. In addition, an
increasing number of startup companies are currently
focusing on PaaS projects and markets.

From a technical perspective, PaaS systems
are understood to be DevOps (an abbreviation of
development and operations) environments for cloud-
hosted applications. In other words, PaaS is expected
to provide efficient tools that help IT engineers quickly
build cloud apps. Cloud computing was originally
introduced to free programmers from the burden
of having to attend to trivial details with respect to
servers, switches, and routers. In practice, however, the
performance of IT engineers continues to suffer due to
the technical complexities of cloud computing.

Cloud computing spans almost every area of
computer science and technology, and thus involves



2 Tsinghua Science and Technology, February 2017, 22(1): 1–9

full-stack techniques. Yet proficient full-stack engineers
are rare in the job market; most engineers have
expertise in only one tier in the stack, e.g., web
services. As a result, cloud-computing engineers must
deal with complicated configurations, deployments,
and performances, with regard to hardware, Operating
System (OS), container (e.g., cgroups[2], Docker, and
Rocket[3]), database (DB), the Transmission Control
Protocol/Internet Protocol (TCP/IP), the Domain Name
System (DNS), and firewall, to name a few. Hence,
IT engineers dream of one day having a reliable and
usable DevOps environment to substantially facilitate
their developments and simplify their operations, i.e.,
to bridge the gap between vivid IT engineers and stiff
cloud systems, as demonstrated in Fig. 1.

Specifically, as demonstrated in Fig. 2, a full-stack
DevOps environment (or PaaS) for cloud-hosted apps
must provide at least the following functions: (1)
app coding, building, and testing, (2) VM/container
monitoring, (3) resource management, (4) task
scheduling, (5) concurrency coordination, (6) system-
log analysis, and (7) information visualization.
Furthermore, there are a few advanced and extended
functions such as RESTful (where REST stands

Fig. 1 PaaS bridges the gap between vivid IT engineers and
stiff cloud systems.

CPU (+ GPU)

OS

VM

Pod

C C C

C

VM

C C

C

C

Network

Storage

DB

Log

Message

Resource 

Manager

Task 

Scheduler

User-facing Services Batch Processing

RESTful APIs

C = Container

PC, Mobile and Web Clients

Build

Code

Test

Fig. 2 A simplified architectural overview of today’s cloud-
computing DevOpS stack.

for REpresentational State Transfer) Application
Programming Interfaces (APIs), team collaboration,
service integration, security protection, and privacy
preservation. In a nutshell, PaaS summarizes and
refines the valuable experiences and concerted efforts
of pioneer cloud-computing engineers with respect
to application developments and operations. The
key goal is to provide IT engineers with a powerful
and perceptive assistant, such that they can rapidly
launch cloud-hosted apps that possess multiple
desirable properties, including extensibility, scalability,
reliability, security, concurrency, and cost efficiency.

This paper is intended to serve as an easy-to-follow
introduction to PaaS, as well as a concise survey of
existing and newly emerging PaaS techniques. Readers
need NOT be cloud computing professionals. First,
we examine a comprehensive list of state-of-the-art
PaaS solutions (e.g., Google App Engine, Google
Borg, AWS Elastic Beanstalk, Microsoft Azure Stack,
OpenStack Horizon and Magnum, VMware Cloud
Foundry, Docker, Puppet, ZooKeeper, and Hadoop
YARN) across various tiers of the cloud-computing
DevOps stack in Section 2. On this basis, we identify
areas of consensus and diversity in their philosophies
and methodologies in Section 3. In addition, we explore
a number of cutting-edge solutions (e.g., Google
Kubernetes, Apache Mesos, Heroku, and our own
recently developed Cloud Studio) towards a more fine-
grained, full-stack DevOps environment in Section 4.
Finally, we make our concluding remarks in Section 5.

2 State-of-the-Art PaaS Solutions

By “state-of-the-art” we mean that a PaaS solution is
either popular in its user base or representative of the
latest technical methodology. We first examine the PaaS
solutions of the three international market giants—
Google, Amazon Web Services (AWS), and Microsoft
Azure. Then, we present the open-source solutions
from OpenStack, VMware, and dotCloud. Finally, we
introduce three classical tools for large-scale system
configuration, coordination, and resource management,
i.e., Puppet, ZooKeeper, and Hadoop YARN.

Google App Engine (GAE). The key advantage
of GAE lies in its significant simplification of
the development and deployment of web services.
With its specially designed and implemented
Software Development Kit (SDK) libraries for
cloud applications, GAE offers a series of useful



Zhenhua Li et al.: Towards a Full-Stack DevOps Environment (Platform-as-a-Service) for Cloud-Hosted Applications 3

functions that can enable cloud apps to rapidly get
online. These functions include automatic resource
scaling, distributed caching, task and message queuing,
reliable data storage, and so forth. Moreover, GAE
provides support for clients to simultaneously access
multiple versions of an app. Client requests (or
workloads) can be automatically routed (or forwarded)
to different app versions according to specific settings
of the app developers, thus facilitating the A/B or split
testing commonly used in the development of market
strategies.

Google Borg. While this powerful, fundamental
“efficiency weapon” has been used in most of Google
services, Borg was kept secret until 2015 when
the paper entitled “Large scale cluster management
at Google with Borg” was published in the ACM
EuroSys’15 Conference Proceedings[4]. This publication
clearly indicates the vital importance of Borg to
Google, since the company’s best ideas and systems
are seldom released to the public. Borg targets
efficient management and high utilization of large-
scale distributed server clusters. Specifically, Borg is
leveraged to run hundreds of thousands of jobs for
thousands of Google services/applications. It spans a
number of clusters, and each cluster consists of up to
tens of thousands of physical servers.

To substantially enhance the resource utilization
of each physical server, Borg makes three critical
choices. First, Borg does not employ VMs, which
can severely degrade the working efficiency of physical
servers. Instead, it utilizes lightweight Linux containers
(LXC, or cgroups). Second, all jobs running on Borg
are classified as one of two kinds of heterogeneous
workloads, namely end-user-facing services (or long-
running services) and batch jobs, for the application
of different resource-management and task-scheduling
strategies. Third, apps are deployed in physical servers
in a mixed manner, i.e., multiple logically isolated apps
can run on the same server, whereas traditionally one
app runs on a dedicated and exclusive cluster of servers.

AWS Elastic Beanstalk and others. Being both the
inventor and dominant force in the cloud computing
market, AWS provides the Elastic Beanstalk system to
help developers rapidly and conveniently deploy and
manage applications on top of AWS. In a sense, the
AWS Elastic Beanstalk scheme is similar in appearance
to that of GAE. In fact, there are many more PaaS
tools offered by AWS than Elastic Beanstalk. For
example, AWS has released several tools for app

developers, such as CodeCommit, CodeDeploy, and
CodePipeline, as well as tools for system operators,
such as CloudWatch, CloudFormation, CloudTrail,
Config, Console, OpsWorks, and Service Catalog.

Microsoft Azure Stack. Despite its somewhat
late entry into the cloud computing market, Microsoft
Azure has firmly established itself in second place
behind AWS. It explicitly positions itself as a full-stack
DevOps environment for cloud-hosted apps. From
a pure PaaS perspective, there are at least a few
tens of services/systems worthy of attention in the
Microsoft Azure Stack. For instance, Azure supplies
multiple tools for the developers: Visual Studio Team
Services, Visual Studio Application Insights, DevTest
Labs, Xamarin (for faster creation of cloud-powered
mobile apps), and Storage Explorer, to name a few.
In addition, Azure provides a few useful monitoring
and management tools: Azure Resource Manager,
Scheduler, Log Analytics, Automation, Site Recovery,
etc.

OpenStack Horizon and Magnum. As the de facto
standard of open-source cloud computing solutions,
OpenStack has also made inroads into the PaaS layer.
Since its inception, OpenStack has provided Horizon,
an information or resource visualization tool (also
known as DashBoard) for cloud computing systems.
As shown in Fig. 3, with OpenStack Horizon a user
can clearly see how many servers s/he owns, the
level of resources in every server, and how well every
server is operating. Meanwhile, OpenStack Horizon
behaves as a coarse-grained console for system resource
management, thus enabling convenient one-click start
up, shut off, stand by, and hibernate operations for
users. Recently, the OpenStack community released

Fig. 3 Snapshot of OpenStack Horizon. Server operation
progress is indicated by a coarse-grained rotating circle.



4 Tsinghua Science and Technology, February 2017, 22(1): 1–9

a novel tool called Magnum to effectively support the
running of containers.

VMware Cloud Foundry. The well-recognized
virtualization company VMware has until recently
seemed irrelevant in relation to “open source”
computing (otherwise, the open-source VirtualBox
project would likely not have emerged). Nonetheless,
in April 2011 to many people’s surprise, VMware
released the first open-source full-fledged PaaS solution
known as Cloud Foundry. Based on Ruby on Rails,
Cloud Foundry acts as a distributed system composed
of multiple independent sub-systems that communicate
with each other through message passing. Using an
identical set of code bases, this system can be deployed
on a mega data center, a couple of personal computers,
or a bundle of public-cloud VMs. Those familiar with
the design philosophy of OpenStack may have noticed
considerable similarity between Cloud Foundry and
OpenStack.

Docker. Since it has gained tremendous popularity
in a short period of time, most people who have
heard of Docker are not aware of the company—
dotCloud—that created it. As the hottest technique
in the cloud computing market in the last few years,
Docker allows applications to run within separate (i.e.,
logically isolated) containers by leveraging a series
of Linux kernel features like cgroups and namespace.
Since many containers share the same Linux kernel, the
resource utilization and working efficiency of Docker
are much higher than those of VMs. The design
philosophy of Docker clearly resembles that of Google
Borg. In the IT industry, efficiency and compatibility are
often at odds, which is also the case in Docker. Despite
its efficiency, Docker has a few shortcomings with
respect to compatibility, such as not supporting 32-bit
architectures or Windows servers. Moreover, increased
sharing of Docker resources results in decreased
isolation of its containers, such that security concerns
have been raised at times.

Puppet and ZooKeeper. For the user who has
purchased and maintained 100 VMs from AWS EC2,
it is often necessary to perform the same or a similar
set of operations on these VMs. Instead of inputting
and running hundreds of repeated Shell commands,
users can consider writing a short Puppet script
(e.g., 100-VM.pp). Puppet is a classical centralized
configuration management system that is applicable
to Linux, Unix, and Windows platforms. Via Puppet,
system administrators or operation staff can easily

manage massive repeated, trivial configuration details.
Puppet uses a simple client/server (C/S) architecture to
organize system nodes, so that average IT engineers can
use it smoothly and without much difficulty. However,
the centralized C/S architecture can become a system
bottleneck.

ZooKeeper has been a popular tool in recent
years for distributed coordination and configuration
management. Although it is more complicated than
Puppet, it is simpler than Paxos[5]. It provides a
number of desired functions in distributed systems,
such as distributed lock, message queue, master node
election, and dynamic configuration. In the scientific
theory of distributed coordination, the ideal scheme
is the Paxos protocol designed by Leslie Lamport,
and Paxos has been practically implemented in the
Google Chubby system. However, Paxos is very
complicated due to its comprehensive considerations
of various possible situations. As an everyday real-
world distributed system, Paxos is often regarded an
“over-provision”. To this end, although ZooKeeper
follows the basic principles of Paxos, it simplified
its implementation in the real world by establishing
a usable and effective ZooKeeper Atomic Broadcast
(ZAB) protocol. Currently, many PaaS systems use
ZooKeeper, such as the resource manager of Apache
Mesos and the message queue of Apache Kafka.

Hadoop YARN. YARN is the abbreviation for
“Yet Another Resource Negotiator”, so it was clearly
developed for Hadoop’s resource management. Why
is it “Yet Another”? Because prior to the advent
of YARN, Hadoop’s original resource manager had
limited scalability (e.g., a Hadoop server cluster
could barely accommodate more than 4000 nodes)
and unsatisfactory resource utilization. Motivated by
these difficulties, the YARN developers designed a
two-layer resource scheduler, i.e., ResourceManager
+ ApplicationMaster, whereby scheduling strategies
for specific tasks are determined by corresponding
applications (i.e., the so-called ApplicationMaster)
rather than a single entity. These changes remarkably
enhanced Hadoop’s scale limitations and resource
utilization.

3 Consensus and Diversity

Based on the above state-of-the-art PaaS solutions, we
identified a number of common principles that are
consistent in most of them. Below we list a few key



Zhenhua Li et al.: Towards a Full-Stack DevOps Environment (Platform-as-a-Service) for Cloud-Hosted Applications 5

points of consensus in the development and operation
of cloud-hosted apps:
� No one PaaS solution fits all scenarios or meets

all requirements, even if it is full-fledged or spans
the full stack. As such, cloud app developers
and operators must develop specific solutions for
specific scenarios, rather than strive to produce a
single solution panacea.
� Usability and reliability dwarf other

performance metrics in practice. Although
academic solutions (e.g., Spark) can seem to
greatly outperform industrial solutions (e.g.,
Hadoop), the former is not likely to replace the
latter any time soon. In real-world scenarios,
user interfaces, security protections, code reviews,
debugging difficulties, and the maturity of the
community are often the primary factors.
� Neither VMs or containers function as actual

physical machines. Almost all VM providers
(e.g., AWS EC2 and Aliyun ECS) caution that
VMs be used only in a stateless manner, i.e., make
every attempt not to store persistent data in a VM
because it can easily crash or even disappear at any
time[6, 7]. There is no doubt that containers are even
more fragile.
� Container is unlikely to grab the entire

market of VM, so a dynamic balance will
likely remain between the market shares of each.
Generally speaking, containers are associated
with efficiency and utilization, while VMs have
better compatibility and isolation. In fact, running
containers in a VM may well become a popular
paradigm for developing and operating cloud-
hosted applications.
� Service Level Agreements (SLAs) essentially

matter more to customers than vendors. SLAs
are not laws, and even many laws are not
followed by people in certain situations. Moreover,
few cloud customers could precisely define
and measure the performance metrics listed
in SLAs. Most customers never measure their
relevant performance metrics. Thus, for a cloud
customer, SLAs need not be taken too seriously in
discussions with a cloud vendor, but can rather be
used as a reference and guide.
� Public clouds facilitate startups, while private

clouds benefit industry veterans. For a startup
company, using AWS EC2 + S3 + RDS can
save significant time and money on infrastructure

maintenance. However, a considerable number of
opportunities would be lost in optimizing system
efficiency, since in this case the infrastructure
is a “black box”. This is why in its first few
years Dropbox fully relied on Amazon S3 for file
content storage[8, 9], but has since migrated the vast
majority of its file-content data to its private object
storage cloud Magic Pocket[10].

On the other hand, we found considerable diversity
in PaaS solutions in terms of their functionality,
popularity, maturity, and openness. As the services
provided by a given PaaS solution become more fine-
grained, its restrictions on upper-layer apps increase
accordingly. As such, there is currently no widely-
recognized PaaS solution that can satisfy all parties’
requirements. When a PaaS solution behaves well in
some tier(s) or metric(s), it typically performs poorly
in others. At the two extremes emerge constrained and
open PaaS solutions.

A constrained PaaS solution would make full or
primary use of underlying resources, i.e., computation,
storage, and network resources. App developers,
however, usually must follow a private/specific set of
constraints in terms of data formats and APIs. At
times, app developers may be confined to using certain
programming languages. GAE is representative of a
constrained PaaS. When programmers build apps based
on GAE, they can take advantage of the techniques
and resources within the Google cloud platform, but
are subject to a variety of constraints such as limited
libraries and language supports, HTTP-style APIs, and
a lack of persistent session states.

At the other extreme, open PaaS solutions impose no
invasive constraints on developers’ program codes, but
give app developers the freedom to preserve as much as
possible their original programming languages, system
frameworks, components, and containers. Heroku
(detailed below in Section 4) is representative of an
open solution that supports all popular programming
languages as well as relative “minority” languages like
Ruby.

Between these two extremes, there are a few semi-
open PaaS solutions that make their source codes
publicly available, e.g., OpenStack, Docker, and Cloud
Foundry. For instance, to improve the openness of
Docker, dotCloud makes it open-source and maintains
a centralized repository[11] for all Docker users to
freely upload their Docker images and easily seek other
Docker images they desire.



6 Tsinghua Science and Technology, February 2017, 22(1): 1–9

4 Frontier Explorations

Having identified the philosophical and methodological
degrees of consensus and diversity in state-of-the-
art PaaS solutions, we now explore a number of
frontier solutions towards a more fine-grained, full-
stack DevOps environment.

Google Kubernetes. “Kubernetes” is not a common
English word, so many people often use its abbreviation
“K8s”. The term “Kubernetes” stems from ancient
Greek and refers to a pilot or steersman. Google is said
to have used this name for a subtle purpose (as depicted
in Fig. 4): Given that Docker projects itself as a whale
who travels the sea while carrying with containers,
Kubernetes is steering the direction of this “container
era”. Although introduced around just one year before
this paper is being written, Kubernetes now occupies a
slightly larger market share than Docker, with mighty
support from several cloud computing market giants.

Currently, most people tend to regard Kubernetes
as an upper-layer framework of Docker. That is to
say, the Kubernetes team has forged a service-centric
distributed system based on Docker, in which a
service can automatically scale and diagnose itself
when necessary. At the same time, in order to shed
its dependence on Docker, Kubernetes now supports
another competitive container technique called Rocket,
which was developed by CoreOS[3], as illustrated in
Fig. 5.

Kubernetes is often viewed as an open-source version
of Google Borg. In addition to its open-source nature,
Kubernetes has made great inroads in improving its
openness. For instance, no matter which programming

Fig. 4 The logos of Docker and Kubernetes.

Fig. 5 Google Kubernetes is launching a “Rocket” towards
Docker (illustration from Ref. [12]).

language is used to write a given app, the app can
be directly mapped to a Kubernetes Service, which
then communicates with the Internet or other Services
via standard TCP-based protocols. Most notably,
Kubernetes adds a novel Pod layer between the server
node and the containers running on this node, as shown
in Fig. 2. Multiple containers can simultaneously run
in the same Pod, thereby effectively enhancing data-
communication efficiency between these containers.
Recently, a novel, hot “micro-service” idea has arisen
in the IT industry, in which an integrated service is
decomposed into multiple independent micro-services
that are connected via network communications. In this
sense, Kubernetes is tailored to support micro-services.

Apache Mesos. Compared with Docker and
Kubernetes, Mesos is more open and has finer
granularity, and as such is called “the kernel of
distributed systems”. Mesos was initially developed
by the famous AMPLab at UC Berkeley[13] and was
then widely used in Twitter. One year after the Mesos
startup, its initiator Ben Hindman, together with his UC
Berkeley team members, made a visit to Twitter. At
that time, only eight engineers in Twitter were present,
which disappointed Ben Hindman. Nevertheless, three
out of these eight engineers later joined the Mesos
project, and all were former Google employees. They
told Ben Hindman that they had (unfortunately) missed
their chance with Google Borg, and did not want to miss
Mesos and the opportunity to utilize a better method for
“reconstructing” Google Borg.

To achieve more openness, Mesos features two major
changes as compared with Docker and Kubernetes.
First, Mesos explicitly separates resource management
from task scheduling, so that applications can better
acquire their desired resources. Second, Mesos provides
resilient Framework interfaces to accommodate
frameworks from other systems, such as Marathon[14]

and Spark[15].
Furthermore, to improve resource management, the

Mesos team put forward a novel resource allocation
strategy they named DRF, i.e., Dominant Resource
Fairness[16]. The idea for DRF originated from the
observations of many IT engineers that, in the presence
of multiple types of resources, an appropriate resource
allocation strategy should focus on the dominant
share of resources desired by users. For example, let
us suppose that Mesos is simultaneously allocating
resources from a physical server to two users A and B,
where user A is running CPU-intensive tasks and user



Zhenhua Li et al.: Towards a Full-Stack DevOps Environment (Platform-as-a-Service) for Cloud-Hosted Applications 7

B is running memory-intensive tasks. In this case, DRF
would strive to allocate more CPU resources to A’s tasks
and more memory to B’s tasks.

Heroku. Founded in 2007 and purchased by
Salesforce in 2010, Heroku struggled for a few years
in the cloud computing market. However, Heroku
recently captured attention for its neutral, open PaaS
platform. To overcome or alleviate the invasion of
too many PaaS solutions to users’ app codes and the
resulting “cloud lock-in” problem, Heroku designed
and implemented a highly portable PaaS platform that
attempts to “be compatible with all mainstream PaaS
solutions,” as depicted in Fig. 6. In addition, through
their comprehensive observations and techniques, the
Heroku team has refined 12 factors necessary for
wisely developing and operating cloud-hosted apps[17].
Notably in 2011, the inventor of Ruby joined Heroku as
its chief architect, which reflects the positive attitude of
the programming community towards Heroku.

Cloud Studio (currently in alpha phase). Almost
all the mainstream PaaS systems have been developed
by big companies like Google and Amazon. However,
this does not mean that small companies and
organizations cannot contribute to PaaS. In fact, small
teams can build specific PaaS solutions to satisfy

special requirements. For example, the authors of
this paper (together with a few other team members
at Tsinghua University) have designed and deployed
an open-source PaaS system called Cloud Studio,
which is publicly available at http://thucloud.
com and soon will also be available at http://
cloudcomputing.studio. Cloud Studio has
recently released a series of useful DevOps tools for
cloud-hosted apps: VirtualPool (for accommodating
VMs and containers), iDashBoard (for displaying
system information and facilitating user operations),
Dual-Cloud Web Acceleration (especially for Google,
Gmail, GitHub, and Dropbox), Cloud Disk (for
hosting user files), iRecommend (for recommending
professionals based on big data analysis), etc.

With respect to the iDashBoard tool, we are the
first to implement a fine-grained progress bar for VM
operations (see Fig. 7), which replaces the simple,
coarse-grained rotating circle used in existing PaaS
solutions (see Fig. 3). This implementation is non-
trivial, since its accuracy heavily relies on tight
coordination between the physical server, the VM, and
the VM Manager (VMM). As demonstrated in Fig. 8,
iDashBoard deploys a Proxy in the physical server and
a Client in the VM, whereby the Proxy interacts with

Fig. 6 Heroku aims to build a PaaS platform for all mainstream PaaS systems.

Fig. 7 Fine-grained progress bar for VM operation implemented in iDashBoard.



8 Tsinghua Science and Technology, February 2017, 22(1): 1–9

Fig. 8 Implementation of the fine-grained progress bar for
VM operation, which requires tight coordination between the
physical server, the VM, and the VMM.

the VMM and the Client reads the VM information.
Meanwhile, the Proxy and the Client report to an
external iDashBoard Server. In the near future, we plan
to implement a real-time, visualized topology graph for
a cloud computing system that will replace the tedious
linear list used in current PaaS solutions.

5 Concluding Remarks

Today, cloud computing is a rapidly evolving industry
characterized by fierce competition, which also holds
true for its DevOps environment or PaaS. As yet, there
is no unified set of PaaS APIs or data formats, and
the three market giants (i.e., AWS, Google Cloud, and
Microsoft Azure) are holding fast to their respective
PaaS standards. Thus, Heroku’s vision of a unified
PaaS has yet to be realized. In order to develop
an appropriate “sweet-spot” solution, many DevOps
teams are using current state-of-the-art PaaS solutions
as references and leveraging open-source PaaS-related
tools to construct their own optimal PaaS solutions. Is
this too complicated a process for today’s IT engineers
who are in need of solutions?

In our opinion, the answer is NO. As we have
mentioned repeatedly, cloud computing technologies
are evolving rapidly and substantially, and are thus
constantly generating novel concepts and tools. For
example, when IT engineers had only just mastered
Hadoop (MapReduce), Spark was introduced, which
reputedly outperforms Hadoop by a factor of 100.
Also, when IT engineers had mastered the operations
of Docker, Kubernetes and Mesos arrived to provide
finer granularity and higher generality. If engineers try
to master all new techniques, they will soon exhaust
themselves.

Fortunately, although cloud computing has created a

novel market, it involves few really novel techniques.
Once we examine the cloud-computing technical stack,
we find that most cloud computing efforts involve
system architecture and resource management, for
which the fundamental resource concerns have always
been computation, storage, and networking. In other
words, the key techniques in the IT industry have
never changed in their essence. These include the
compilation, link, load, and execution of programs; the
management of CPU, memory, and disk I/O by the
OS; and TCP/IP-based protocols. Wise engineers can
ascertain the simple basics behind the dizzying array
of novelties, and thus adapt rather than be hijacked by
them.

References

[1] H. Yu, PaaS Implementation and Operation Management,
(in Chinese). Publishing House of Electronics Industry,
China, 2016.

[2] Linux Control Groups (cgroups), https://www.kernel.
org/doc/Documentation/cgroup-v1/cgroups.txt, 2016.

[3] CoreOS is building a container runtime rkt (Rocket),
https://coreos.com/blog/rocket, 2016.

[4] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E.
Tune, and J. Wilkes, Large-scale cluster management at
Google with Borg, in Proceedings of the 10th European
Conference on Computer Systems (EuroSys), Bordeaux,
France, 2015.

[5] L. Lamport, Paxos made simple, ACM SIGACT News, vol.
32, no. 4, pp. 18–25, 2001.

[6] E. Zhai, R. Chen, D. I. Wolinsky, and B. Ford, Heading off
correlated failures through independence-as-a-service, in
Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Broomfield,
CO, USA, 2014.

[7] E. Zhai, R. Chen, D. I. Wolinsky, and B. Ford, An
untold story of redundant clouds: Making your service
deployment truly reliable, in Proceedings of the 9th
Workshop on Hot Topics in Dependable Systems (HotDep),
Farmington, PA, USA, 2013.

[8] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B.Y. Zhao, C. Jin, Z.-
L. Zhang, and Y. Dai, Efficient batched synchronization
in dropbox-like cloud storage services, in Proceedings
of the 14th ACM/IFIP/USENIX International Middleware
Conference (Middleware), Beijing, China, 2013.

[9] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng, Y.
Liu, Y. Dai, and Z.-L. Zhang, Towards network-level
efficiency for cloud storage services, in Proceedings of
the 14th ACM Internet Measurement Conference (IMC),
Vancouver, Canada, 2014.

[10] Inside the magic pocket, http://blogs.dropbox.com/tech/
2016/05/inside-the-magic-pocket, 2016.

[11] Docker Image Library (or Hub), http://hub.docker.com,
2016.



Zhenhua Li et al.: Towards a Full-Stack DevOps Environment (Platform-as-a-Service) for Cloud-Hosted Applications 9

[12] Docker in production: The bloody battle of container
orchestrators, http://blog.octo.com/docker-en-production-
la-bataille-sanglante-des-orchestrateurs-de-conteneurs,
2016.

[13] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.
D. Joseph, R. Katz, S. Shenker, and I. Stoica, Mesos:
A platform for fine-grained resource sharing in the data
center, in Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
San Jose, CA, USA, 2012.

[14] Marathon: A container orchestration platform for Mesos
and DCOS, https://mesosphere.github.io/marathon, 2016.

[15] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.
McCauley, M. Frankli, S. Shenker, and I. Stoica, Resilient
distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing, in Proceedings of the 9th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), San Jose, CA, USA, 2012.

[16] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S.
Shenker, and I. Stoica, Dominant resource fairness: Fair
allocation of multiple resource types, in Proceedings of
the 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), San Jose, CA, USA, 2012.

[17] The Twelve-Factor App, https://12factor.net, 2016.

Zhenhua Li is an assistant professor at the
School of Software, Tsinghua University.
He received the BSc and MSc degrees
from Nanjing University in 2005 and 2008,
respectively, and the PhD degree from
Peking University in 2013, all in computer
science and technology. His research areas
mainly consist of cloud computing/storage,

big data analysis, content distribution, and mobile Internet.

Yun Zhang is a master student at the
School of Software, Tsinghua University.
He received the BSc degree from the
Harbin Institute of Technology in 2014.
His research areas comprise cloud
computing, big data analysis, and so forth.

Yunhao Liu is a professor at the School
of Software, Tsinghua University. He
received the PhD degree and MS degree
in computer science and engineering
from Michigan State University in 2003
and 2004, respectively, and the BEng
degree from Tsinghua University in 1995.
His research interests include distributed

systems, wireless sensor networks/RFID, cyber physical
systems, Internet of Things (IoT), privacy and security, and so
forth. He is a fellow of ACM and IEEE.


