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a b s t r a c t

Combinatorial optimization problems such as Traveling Salesman Problem (TSP) have a wide range
of real-world applications in transportation, logistics, manufacturing. It has always been a difficult
problem to solve large-scale TSP problems quickly because of memory usage limitations. Recent
research shows that the Transformer model is a promising approach. However, the Transformer
has several severe problems that prevent it from quickly solving TSP combinatorial optimization
problems, such as quadratic time complexity, especially quadratic space complexity, and the inherent
limitations of the encoder and decoder itself. To address these issues, we developed a memory-efficient
Transformer-based network model for TSP combinatorial optimization problems, termed Tspformer,
with two distinctive characteristics: (1) a sampled scaled dot-product attention mechanism with
O(L log(L)) (L is the length of input sequences) time and space complexity, which is the most different
between our work and other works. (2) due to the reduced space complexity, GPU/CPU memory usage
is significantly reduced. Extensive experiments demonstrate that Tspformer significantly outperforms
existing methods and provides a new solution to the TSP combinatorial optimization problems. Our
Pytorch code will be publicly available on GitHub https://github.com/yhnju/tspFormer.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

Combinatorial optimization problem (Cook, Lovász, Seymour,
t al., 1995; Hochba, 1997; Li et al., 2020; Papadimitriou & Stei-
litz, 1998) has important applications across many domains,
uch as transportation, logistics, production planning, operations
esearch (Arora, 1998; Helsgaun, 2017b; Optimization, 2018; Pa-
adimitriou & Steiglitz, 1998; Vasek Chvatal, Applegate, Bixby,
Cook, 2006). The Traveling Salesman Problem (TSP) (Boese,

995; Gutin & Punnen, 2006; Jünger, Reinelt, & Rinaldi, 1995) is
classic combinatorial optimization problem, and many combi-
atorial optimization problems can be reduced to the TSP. Tra-
itional methods to solve combinatorial optimization problems
nclude exact methods (Woeginger, 2003) and various heuristic
pproximation algorithms (Arora, 1998; Helsgaun, 2017b; Lin &
ernighan, 1973).
In recent years, the use of machine learning methods to solve

ombinatorial optimization problems has aroused a great deal of
nterest and great attention. In contrast, the machine learning
ethod can have a faster solving speed, better generalization, and
daptability. Machine learning methods are likely to be suitable

∗ Corresponding author.
E-mail address: yang-h17@mails.tsinghua.edu.cn (H. Yang).
ttps://doi.org/10.1016/j.neunet.2023.02.014
893-6080/© 2023 Elsevier Ltd. All rights reserved.
for many optimization tasks through heuristic methods of auto-
matically discovering itself based on training data, so they need
minor manual operations than all kinds of solvers (Google, 2018;
Optimization, 2018; Vasek Chvatal et al., 2006) only optimize
for one job. Compared with traditional methods, the learning
methods can greatly reduce the time of test instances, which
is the advantage of learning methods for solving combinatorial
optimization problems such as the TSP. On large-scale problems,
test instances can yield results in milliseconds using a trained
model, while traditional methods take months.

Recently, the Transformer model (Vaswani et al., 2017) has
shown superior performance in solving combinatorial optimiza-
tion problems than Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN) models. However, when the
Transformer model is used to train large-scale TSPs, insufficient
computer memory becomes the most significant bottleneck,
nd the training time is also very long. With the increase in
he number of city nodes, the training time is getting longer
nd longer, and the memory requirement is getting larger and
arger, which eventually leads to memory overflow. As shown in
ig. 1, the dynamic programming algorithm with O(n22n) space

complexity will terminate on the server with 32G memory due
to out-of-memory when the number of city nodes reaches 27.

https://doi.org/10.1016/j.neunet.2023.02.014
https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2023.02.014&domain=pdf
https://github.com/yhnju/tspFormer
mailto:yang-h17@mails.tsinghua.edu.cn
https://doi.org/10.1016/j.neunet.2023.02.014
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Fig. 1. Memory and time usage. (a) Memory usage, out-of-memory takes place
f the number of nodes is more than 27. (b) Running time of the dynamic
rogramming algorithm.

Vanilla Transformer model architecture (Vaswani et al., 2017),
specially self-attention of Multi-Head Attention (MHA) Mecha-
ism has three significant limitations when solving TSP combina-
orial optimization problems:

• Computational complexity is quadratic. The operation of
the scaled dot-product attention in the MHA causes O(L2) (L
is the length of input sequences) of time and space complex-
ity.

• Memory requirements are too high resulting in out of
memory. When the number of city nodes is large, there will
be a problem of insufficient CPU/GPU memory.

• Due to the limitations of the previous two, the scale of the
problem to be solved is limited to a small scale, and it is
challenging to solve medium-scale and large-scale TSP
problems.

To solve these three problems, also to more effectively solve
he TSP combinatorial optimization problem, we have thoroughly
tudied the self-attention mechanism of the Transformer model
o meet the TSP-specific problem solutions. The contributions of
his work are as follows:

• Reduce time and space complexity of Transformer for
the TSP combinatorial optimization field : When using
the Transformer to solve the TSP combinatorial optimization
problem with an exhaustive search NP-hard problem of
O(L!) time complexity, we are the first to reduce the time
and space complexity from O(L2) to O(Llog(L)), where L is
the length of input sequences, i.e. the number of city nodes.

• Reduce the memory usage of Transformer model: By im-
proving the MHA layer of the Encoder to reduce the space
complexity and deleting the first layer of the decoder, the
masked MHA layer, we have significantly reduced the num-
ber of parameters of the model, thereby reducing the mem-
ory usage.

In addition to this, the biggest difference between our work
nd existing work is in the following aspects:

• Compared with work (Bresson & Laurent, 2021), our work
modified the transformer network model (Vaswani et al.,
2017) to make the time complexity and space complexity
590
of the model from O(L2) is reduced to O(LlogL), which can
increase the number of training nodes; (Bresson & Laurent,
2021)’s work is to train a model with the full structure of the
transformer as much as possible, and then use this model to
predict new sample instances.

• Compared with work (Kool, Van Hoof, & Welling, 2018), in
addition to the above advantages, we did not train multiple
baseline models such as critic or rollout, which improved the
speed of training convergence; (Kool et al., 2018) is to solve
all kinds of routing problems such as VRP, CVRP, etc. Kool
et al. (2018) used graph embedding and the transformer to
represent the features of the model.

• Compared with work (Zhou et al., 2021), we train the model
with reinforcement learning on unlabeled data, and train
and test with randomly generated data and real data, while
the authors of (Zhou et al., 2021) train the model with
supervised learning with labeled data, and they use their
own datasets and public datasets for training and testing.

he above work and other work based on pointer network
Vinyals, Fortunato, & Jaitly, 2015), work based on graph neural
etwork (Scarselli, Gori, Tsoi, Hagenbuchner, & Monfardini, 2008)
nd work based on local search (Hottung & Tierney, 2019) are all
oo complex in time and space. When the scale of city nodes be-
omes larger, there will be insufficient memory or the problem of
oo long training time. Therefore, this paper attempts to address
hese issues.

. Related works

On the TSP, we take a quick look at the available machine
earning-based methods and do not talk about the Non-learned
ethods for interested authors to take refer to Applegate et al.

2009), Helsgaun (2017a) and Rego, Gamboa, Glover, and Oster-
an (2011).
To solve TSP problems, in addition to exceptional solvers such

s Concorde (Vasek Chvatal et al., 2006) Gurobi (Optimization,
018), LKH3 (Helsgaun, 2017b), Google OR_Tools (Google, 2018),
he use of neural networks has attracted more and more atten-
ion. Neural networks can learn better heuristic features from
ata to replace hand-crafted heuristic features in the TSP com-
inatorial optimization. Typical work using neural networks to
olve combinatorial optimization problems includes the Hopfield-
ets (Hopfield & Tank, 1985) network which uses firstly neural
etworks to solve small-scale TSP problems, the Pointer Net-
orks (Vinyals et al., 2015) which mainly use the attention mech-
nism (Bahdanau, Cho, & Bengio, 2014) to solve the
ariable length output problem, the Neural Combinatorial Op-
imization (Bello, Pham, Le, Norouzi, & Bengio, 2016) which
ses Reinforcement Learning and RNN to solve TSP problems,
he Vehicle Routing Problem (VRP) (Nazari, Oroojlooy, Snyder, &
akác, 2018) which solves the VRP problem using Reinforcement
earning.
Xing, Tu, and Xu (2020) solved the TSP using Monte Carlo tree

earch and deep reinforcement learning, which first converted
he TSP into a tree search problem with a deep neural network.
ut it can only solve the small-scale TSP problem. Ma, Ge, He,
haker, and Drori (2019) proposed a Graph Pointer Network to
ackle the larger-scale TSP with time windows using hierarchical
einforcement learning and a graph embedding layer. But the
ccuracy of the result is not high. Barrett, Clements, Foerster, and
vovsky (2020) proposed exploratory combinatorial optimization
ECO-DQN) to address any combinatorial optimization problem
n a graph, and continuously improved the solution by learning
o explore during the test phase not constructing the solution
ncrementally. More exploratory time is required during the test-
ng phase. Joshi, Cappart, Rousseau, Laurent, and Bresson (2020)
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olved large-scale TSP through transfer learning and zero-shot
eneralization and trained on small-scale datasets for generaliz-
ng to large-scale unseen datasets. Sultana, Chan, Sarwar, and Qin
2022) proposed a non-Euclidean TSP network architecture that
eneralizes across all kinds of instances and can scale to instances
hat are larger than what was used during training time. Fu, Qiu,
nd Zha (2021) trained a small-scale model in supervised learning
nd generalized it to arbitrarily large size of the TSP instances
sing graph sampling and Monte Carlo tree search.
The work (Khalil, Dai, Zhang, Dilkina, & Song, 2017) learned

euristic algorithms with a combination of graph embedding
nd reinforcement learning (Sutton & Barto, 2018) on a diverse
ange of optimization problems over graphs such as the TSP,
inimum Vertex Cover, Maximum Cut. The work (Joshi, Laurent,
Bresson, 2019) used efficient TSP graph representation learning
nd the GCN (Graph Convolutional Networks) to output TSP se-
uence tours in a non-autoregressive manner, and improved the
olutions of the tours with highly parallelized beam search.
In addition to the above work of reinforcement learning (Sut-

on & Barto, 2018) and graph neural network (Scarselli et al.,
008) solving the TSP and the VRP, the work of deep learning
Goodfellow, Bengio, Courville, & Bengio, 2016) to solve the TSP
nd the VRP has also performed quite well. The first work to solve
he TSP with deep learning is the pointer network (Vinyals et al.,
015). The author of this paper uses LSTM to build a network
odel, and first uses the RNN deep learning model to solve com-
inatorial optimization problems such as the TSP. Then, the work
f (Satyananda & Abdullah, 2021) reviews using deep learning to
andle congestion in the VRP (Vehicle Routing Problems), which
ses historical traffic data to train a deep learning network mode
nd inferred traffic prediction in future time. Furthermore, Xin,
ong, Cao, and Zhang (2021) combine deep learning with the
in–Kernighan–Helsgaun (LKH) for solving the TSP, which imple-
ents the combination of deep learning methods and traditional
euristic algorithms to solve the COP (combinatorial optimization
roblems). Sultana et al. (2022) use a deep learning approach
o solve a variety of different TSP problems including a non-
uclidean TSP, a non-uniform distribution TSP. Also Kool, van
oof, Gromicho, and Welling (2022) combine deep learning and
ynamic programming algorithms to solve the TSP and the VRP.
More work is to combine deep learning and reinforcement

earning (Sutton & Barto, 2018) to solve combinatorial optimiza-
ion problems such as the TSP and the VRP. The first work of this
ype is Bello et al. (2016), which presents a framework to tackle
ombinatorial optimization problems such as the TSP using deep
eural networks and reinforcement learning (Sutton & Barto,
018). The work of Miki, Yamamoto, and Ebara (2018) learns the
est solution instead of the optimal solution with deep learning
nd reinforcement learning for the TSP. The work of James, Yu,
nd Gu (2019) is to solve the online VRP with deep reinforce-
ent learning, converting the online VRP to a VRP generation
roblem. The work of d O Costa, Rhuggenaath, Zhang, and Akcay
2020) learns a local search heuristic based on 2-opt operators
y applying DRL (deep reinforcement learning). Ouyang, Wang,
an, Jin, and Weng (2021) generalize small instances to large
nes in applying DRL (deep reinforcement learning) to solve the
SP. The work of García-Torres, Macias-Infante, Conant-Pablos,
rtiz-Bayliss, and Terashima-Marín (2022) proposes a memory-
fficient algorithm to tackle the CVRP (Capacitated Vehicle Rout-
ng Problem) using deep learning and reinforcement learning
pproaches. Pan and Liu (2022) propose a novel framework to
olve a dynamic VRP with deep learning and reinforcement learn-
ng. Chen, Huang, Zhang, and Wang (2022) use the DRL (deep
einforcement learning) method for the VRPTW (vehicle routing
roblem with time windows) and propose a novel end-to-end
eep reinforcement learning method with a two-stage training
trategy for the VRPTW.
591
The following three tasks are highly related to the work of
this paper, and they all use Transformer to solve TSP problems.
The first work of using the Transformer (Vaswani et al., 2017) to
solve the TSP problems is Deudon, Cournut, Lacoste, Adulyasak,
and Rousseau (2018). This paper used the standard Encoder of
the Transformer without the usage of the positional encoding,
and used the recently visited three city nodes as the characteristic
input of the Decoder. At the same time, it used the 2-opt heuristic
algorithm (Johnson, 1990) to enhance the accuracy of the results
predicted by the Transformer model.

However, the work that has an important impact is Kool et al.
(2018). This paper used the Transformer model to solve path
optimization problems, including the TSP, the Vehicle Routing
Problem (VRP), the Orienteering Problem (OP), etc. It used graph
embedding to represent the features of the location coordinates
of city nodes, and the encoder is also an Encoder of a standard
Transformer without position encoding, and used the first city
node visited and the last seen city node as an input to the
Decoder. The latest work in this area is Bresson and Laurent
(2021). This paper keeps the complete Transformer structure as
much as possible to solve the TSP problems. Unlike the standard
Transformer, the Encoder does not use positional encoding. The
Decoder uses all partially visited city nodes as the input of the
Decoder.

Obviously, the biggest difference between the work of this
paper and the work of these three papers is the time and space
complexity is reduced to O(L log(L)), where L is the length of input
equences, i.e. the number of city nodes. The time and space
omplexity of the Transformer network structure in the above
hree papers are all O(L2), and the Decoders are all autoregressive
ethods, one node at a time, which are all constructive solutions,
nd the number of solved nodes did not exceed 100.
Part of the above work uses supervised learning to design

etwork models, but these supervised learning-based approaches
eed a huge number of pre-computed TSP solutions, making
hem challenging to apply to large-scale situations. Therefore,
he majority of the above work used reinforcement learning to
odel the network architecture and train the network model. In
ddition to the regular TSP problems, there are various variants
f TSP such as the decision TSP (Prates, Avelar, Lemos, Lamb, &
ardi, 2019), the multiple TSP (Kaempfer & Wolf, 2018), the VRP
vehicle routing problem ) (Kool et al., 2018; Lu, Zhang, & Yang,
019; Nazari et al., 2018).

. Preliminaries

.1. Problem formulation

In this work, we focus only on solving the two-dimensional
uclidean plane-symmetric TSP, which is a complete and undi-
ected graph. Given a problem instance of the TSP graph s, the
ode feature is represented as the node location coordinate xi, i ∈

1, 2, 3, . . . , n}. We are concerned with finding an optimal route
permutation of the nodes π such that each city is visited only
once and has the minimum total distance L(π |s). The objective
function of the TSP can be formalized as the following constrained
optimization problem:

min
π

L(π |s) =

n−1∑
i=1

∥xπi − xπi+1∥2 + ∥xπ1 − xπn∥2

s.t. f (π, s) = 0, (1)
g(π, s) ≤ 0.

here f (π, s) and g(π, s) is constraint functions.
We learn the solutions of the problem instances using Rein-

orcement Learning (Sutton & Barto, 2018). Therefore, we define
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Fig. 2. The Tspformer architecture. The green arrows represent the input, and
the small red dots are randomly sampled data points, and the final output is
Atten.

rewards, actions, transition, states, and policy, which are essen-
ial variables in the Markov Decision Process of Reinforcement
earning, as follows:

• States: The state st represents an ordered sequence of visited
city nodes in the TSP instances. The initial state s0 is NULL,
the first state s1 is the index order of the first visited city,
and the final state sn is the collection of all the visited city
nodes.

• Actions: The action at is one of the unvisited city nodes, in
other words, the next node which will be selected.

• Rewards: The reward value is defined as the negative dis-
tance cost, i.e. r(ai, si) = −∥xπi − xπi+1∥2.

• Transition: The state transition of the traveling salesman
problem is to select one from the collection of city nodes
that have never been visited and add it to the collection of
city nodes that have been seen.

• Policy: The policy pθ (π |s) is represented as a neural network
and the parameter θ is the trainable weights of the network.
Given a set of visited city nodes, this policy function pθ (π |s)
will return the probability distribution of the next unse-
lected candidate city. This policy function pθ (π |s) is defined
as Eq. (2) using a probability chain rule.

pθ (π |s) =

n∏
pθ (πi|π1...i−1, s) (2)
i=1 T

592
. The model architecture

Our proposed Tspformer holds the architecture of the encoder
nd decoder while addressing the TSP combinatorial optimization
roblem. The model architecture of Tspformer is illustrated in
ig. 2, coming from the overall structure of the vanilla Trans-
ormer (Vaswani et al., 2017) but making the following essential
hanges:

1. Reduce time and space complexity: We sample the query
data of the decoder so that the time and space com-
plexity of the score function of the attention mechanism,
i.e., scaled dot-product attention function (Vaswani et al.,
2017; Zhou et al., 2021), is reduced from O(L2) to O(Llog(L)),
where L is the length of input sequences, i.e. the number
of city nodes. Please refer to Fig. 2, and we will discuss in
detail in the next section.

2. Delete the first module of the Decoder in the Transformer
architecture, i.e., Masked Multi-Head Attention module.

3. Remove the positional encoding of the Encoder in the
Transformer architecture, i.e., Positional Encoding module.

Concerning the model, the main novelty between the In-
ormer (Zhou et al., 2021) model as presented in Zhou et al. (2021)
nd our presented Tspformer model is as follows:
(1) in an encoder module, we do not use a self-attention

istilling operation, while the Informer (Zhou et al., 2021) model
tilizes it indeed.
(2) in the scaled dot-product attention module, we shuffle

he input data and sample randomly from them, while the In-
ormer (Zhou et al., 2021) model emphasizes the order of the
nput.

(3) in the input module, we use αlog(L) as the length of the
nput, while the Informer (Zhou et al., 2021) model does not.

(4) in the decoder module, we delete the first module of
he decoder, scaled dot-product attention module, while the In-
ormer (Zhou et al., 2021) uses it.

(5) in the output of the decoder module, we autoregressive
utput one node at a time, while the Informer (Zhou et al., 2021)
odel is one shot at non-autoregressive and includes partial
eros in the whole solution.

.1. Tspformer architecture

The Multi-Head Attention (MHA) module is the main compo-
ent of the Transformer (Vaswani et al., 2017), and the Scaled
ot-Product Attention in MHA is the most time-consuming cal-
ulation. In terms of the query sparsity from Informer (Zhou et al.,
021), the score function of Scaled Dot-Product Attention forms
n extended tail distribution, i.e., the primary attention comes
rom a few dot-product values, and others can be negligible.
herefore, the query data can be sampled, resulting in fewer data
oining the matrix multiplication operation.

As shown in Fig. 2, the input of the Tspformer architecture is
query, key, value, and the length of the input data sequence,
enoted as Q, K, V, L, respectively. The MHA of the Transformer
s defined as
ultiHeadAttention(Q , K , V )

= Concat(Head1,Head2, . . . ,Headh)W o (3)

here Q , K , V ∈ RH×dm are the input matrices, H is the sequence
length, h is the number of the head, and dm is the embedding
imension.
The sample number of the key is N = α log(L), α is fine-

uning parameters, usually set to 1 ∼ 10, i.e., α ∈ [1, 10].
he key is sampled representing as Ksample = Sample(K ,N).
he compatibility of the query and key is computed using the
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ollowing matrix multiplication, i.e. Eq. (4), and its result Q _E
akes the first N values with the highest probability which index
s TopM , and then in terms of the TopM the data query is sampled,
.e., Qred. Again, we computed the compatibility of the query and
ey with Eq. (5). After masking the visited city nodes, we can
ompute the attention value such as Eq. (6). The overall process
f efficient Sampled Scaled Dot-Product Attention Mechanism
hows in Algorithm 1, and the proof of its mathematical theory
efers to Informer (Zhou et al., 2021).

_E = MatMul(WQQ ,W KsampleKsample) (4)

Q _Reduce = MatMul(WQredQred,W KK ) (5)

Headi = AttSampled(QredW
Qred
i , KW K

i , VW V
i )

= softmax(
QredW

Qred
i (KW K

i )T
√
dk

)VW V
i

(6)

where WQred
i ,W K

i ∈ Rdm×dk , W V
i ∈ Rdm×dv are the learnable ma-

rices, and dk, dv is the hidden dimensions of the linear projection,
nd we suppose dk = dm = dv = d.
Encoder It is a standard Encoder of Transformer with resid-

ual connection and batch normalization replacing for layer nor-
malization, except for scaled dot-product attention replacing for
sampled scaled dot-product attention.

Decoder The Decoder of Tspformer removed the first compo-
nent of the standard Transformer, i.e., Masked Multi-Head Atten-
tion module. The others are the same as Transformer model. It
uses autoregressive step by step, one city node at a time, and the
Greedy search and Beam search to refine the solution space.

Algorithm 1 Sampled Scaled Dot-Product Algorithm
Input: Q , K , V ∈ RL×dm , L ∈ Rn

utput: atten
1: Initialize α ∈ [1, 10],N = α log(L)
2: randomly select N data from K as Ksample
3: compute score function Q _E = QKsample
4: compute M = max(Q_E) - mean(Q_E)
5: set TopM from M as Qred
6: mask Qred = Qred

⨀
Mmask

7: compute score value atten = softmax( QredKT
√
d

)V
8: return atten

4.2. Model training with reinforcement learning

In terms of combinatorial optimization, Reinforcement Learn-
ng (Sutton & Barto, 2018) may give an acceptable approach
or training neural networks. To reduce the parameters of the
spformer network, we employ model-free policy-based Rein-
orcement Learning (Sutton & Barto, 2018) to train the network
odel. The loss function is the ATL (Average Tour Length) which

s defined as Eq. (7), given an input graph s

(θ |s) = Epθ (π |s)L(π |s) (7)

We use stochastic gradient descent and policy gradient meth-
ds to optimize the Tspformer parameters. The well-known REIN-
ORCE algorithm (Williams, 1992) is used to compute the update
f the gradient, i.e., Eq. (8).

θC(θ |s) = Epθ (π |s)[(L(π |s) − b(s))∇θ log pθ (π |s)] (8)

here b(s) is a baseline independent of π and predicts the ATL
o decrease gradient variance. A good b(s) baseline decreases
radient variance and speeds up learning. We select the Greedy
lgorithms of decoding as the baseline.
593
In order to construct mini-batch B and sample a single tour,
e sample graphs s1, s2, . . . , sB ∼ S, with Monte Carlo sampling,

the gradient in Eq. (8) is approximated as follows:

∇θC(θ ) =
1
B

B∑
i=1

(L(πi|si) − b(si))∇θ log pθ (πi|si) (9)

. Experiments

.1. Datasets and experimental details

We use datasets generated artificially, which are randomly
enerated in the unit square [0,1]*[0,1] from a uniform distribu-
ion, and the real-world public dataset, named TSPLIB (Heidel-
erg, 2005). The test instances and the training instances must
e independent and identically distributed (i.i.d), and we use a
niform distribution to sample between 0 and 1. Other forms of
ata need to be normalized first to move between 0 and 1.
All models are trained/tested on a single piece of Geforce RTX

080Ti GPU with 11G GPU memory and CPU E5 2678 v3 with
2G CPU memory. Pytorch1.8 is used in the experiments. When
he number of city nodes does not exceed 200, we set the mini-
atches to 32, when the number of nodes is 400 and 600, set it
o 16, and when the number of nodes is 800, set it to 5, and the
umber of nodes is 1000, set it to 4.
Tspformer has an Encoder of 6 stacks with h = 8 heads and
= 256 hidden dimensions, and a Decoder of 2 stacks with

nly cross-attention component and feed-forward network. Our
roposed approaches are optimized utilizing the Adam optimizer,
hose learning rate starts at 1e−4 and decays 10 times per 2
pochs, for a total of 10 epochs.

.2. Results and analysis

The comparison between our proposed Tspformer and other
imilar works shows in Table 1. To evaluate the effectiveness of
ur model and other similar baseline works, we present two types
f metrics: Average Tour Length (ATL), and Optimality Gap Ratio
OGR), which is the average percentage ratio of the anticipated
our length compared to optimal solutions. The optimal solution
btained by the three solvers Concorde, Gurobi, and OR_Tools is
comparison baseline for all other tasks.
From Table 1, we observe that:
(1) the Tspformer can find the ATL of 1000 city nodes, while

ther works can only find that of no more than 200 nodes because
f out-of-memory.
(2) from the data of 20, 100, and 200 nodes, it can be seen

hat the performance of Tspformer is slightly reduced, but the
emory usage and training time are reduced. Compared with the
eneral neural network in the middle row and the transformer-
ased model structure in the ‘‘Tspformer’’ row, the OGR value of
spformer is slightly larger. However, from Tables 3 and 4, we can
ind that the training time and the memory usage is significantly
educed.

(3) As can be seen from the last 2 rows of Table 1, after using
reedy search and Beam search, the performance of all kinds of
he TSP instances is improved highly.

(4) using neural network structures such as CNN, RNN, and
ransformer can achieve near-optimal performance, such as Bello
t al. OGR 1.04%, ATL 3.87, and Kook et al. OGR 0.26%, ATL 3.84,
s close to the optimal solution of 3.83 in the TSP20.

(5) we use 500, 750, and 1000 nodes to train a model directly,
nd then use these trained models to test the data while we do
ot use the model trained with 200 nodes, and then generalize
o 500, 750, and 1000 nodes to get test data. The important
ignificance of this is that a model trained with 1000 nodes can
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Table 1
Comparison of Tspformer with three solvers and similar work by other authors. All results are averaged based on 100 random instances. The number of city nodes
in the TSP graph are 20, 100, 200, 500, 750 and 1000. ATL, i.e., Average Travel Length, and OGR (Optimal Gap Ratio). GS (Greedy Search), BS (Beam Search with the
width of search 10). The ‘-’ indicates out-of-memory.
Method TSP20 TSP100 TSP200 TSP500 TSP750 TSP1000

ATL OGR ATL OGR ATL OGR ATL OGR ATL OGR ATL OGR

Concorde 3.83 0.00% 7.77 0.00% 10.53 0.00% 16.58 0.00% 20.14 0.00% 23.12 0.00%
Gurobi 3.83 0.00% 7.77 0.00% 10.53 0.00% 16.57 0.00% – – – –
OR-Tools 3.84 0.26% 7.97 2.57% 11.78 11.87% 17.46 5.3% 22.41 11.3% 26.48 14.5%

Bello et al. 3.87 1.04% 8.33 7.21% 13.43 27.54% – – – – – –
Dai et al. 3.89 1.57% 8.28 6.56% 13.87 31.72% – – – – – –
Nazari et al. 3.97 3.66% 8.44 8.62% 13.02 23.65% – – – – – –
Joshi et al. 3.83 0.00% 8.05 3.60% 12.94 22.89% – – – – – –

Deudon et al. 3.84 0.26% 8.85 13.90% 12.64 20.04% – – – – – –
Kool et al. 3.84 0.26% 7.94 2.19% 13.22 25.54% – – – – – –
Bresson et al. 3.89 1.57% 7.79 0.26% 12.37 17.47% – – – – – –
Tspformer. 3.91 2.09% 8.39 7.98% 13.53 28.49% 18.27 10.19% 23.79 18.12% 29.89 29.28%
Tspformer(GS). 3.89 1.57% 7.96 2.45% 13.26 25.93% 18.02 8.69% 23.06 14.50% 28.33 22.53%
Tspformer(BS). 3.84 0.26% 7.79 0.26% 13.03 23.73% 17.57 5.97% 22.89 13.65% 27.02 16.87%
Table 2
The training time and testing time comparison of Tspformer with similar work by other authors. We take 100 randomly generated test data and take the sum of
their total test time, the unit of time is seconds. The number of city nodes in the TSP graph are 20, 100, 200, 500, 750 and 1000. GS (Greedy Search), BS (Beam
Search with the width of search 10). Similar work by other authors also uses a beam search method with a width of 10, which is exactly the same as the parameters
used by our beam search method Tspformer(BS). The ‘-’ indicates out-of-memory.

method TSP20 TSP100 TSP200 TSP500 TSP750 TSP1000

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing

Bello et al. 2 h 29 m 1.8 s 37 h 12 m 78.3 s 67 h 49 m 84.6 s – – – – – –
Dai et al. 2 h 51 m 2.5 s 48 h 29 m 61.3 s 72 h 32 m 85.2 s – – – – – –
Nazari et al. 2 h 42 m 2.1 s 45 h 48 m 60.5 s 81 h 10 m 91.5 s – – – – – –
Joshi et al. 2 h 37 m 1.9 s 39 h 27 m 59.8 s 74 h 19 m 82.4 s – – – – – –

Deudon et al. 2 h 40 m 3.2 s 38 h 31 m 57.2 s 69 h 73 m 97.5 s – – – – – –
Kool et al. 2 h 41 m 2.5 s 39 h 43 m 72.4 s 71 h 39 m 98.9 s – – – – – –
Bresson et al. 2 h 52 m 2.4 s 38 h 33 m 69.6 s 66 h 27 m 96.2 s – – – – – –
Tspformer(GS). 2 h 12 m 1.1 s 35 h 43 m 3.5 s 61 h 39 m 6.4 s 81 h 28 m 7.3 s 103 h 38 m 9.5 s 124 h 26 m 14.6 s
Tspformer(BS). 2 h 12 m 1.6 s 35 h 43 m 54.2 s 61 h 39 m 77.3 s 81 h 28 m 143.7 s 103 h 38 m 182.4 s 124 h 26 m 235.8 s
Table 3
Tspformer training time per epoch with 100 iterations. The time unit of each data is seconds. The ‘-’ indicates out-of-memory.
Works TSP20 TSP50 TSP100 TSP200 TSP400 TSP600 TSP800 TSP1000

Deudon et al. 21.16 46.52 88.23 180.35 – – – –
Kool et al. 19.25 43.11 81.79 178.42 – – – –
Bresson et al. 20.43 45.76 82.57 179.38 – – – –
Tspformer. 15.89 32.82 62.17 125.68 254.26 392.29 503.24 672.57
Table 4
Comparison for Tspformer memory usage. The unit of each data is MB. The ‘-’ indicates out-of-memory.
Works TSP20 TSP50 TSP100 TSP200 TSP400 TSP600 TSP800 TSP1000

Deudon et al. 1347 1591 2312 5141 – – – –
Kool et al. 1301 1498 2283 5101 – – – –
Bresson et al. 1321 1587 2299 5125 – – – –
Tspformer. 1287 1467 1917 3713 5893 6343 6809 7967
be used to infer the test data of up to 10000 nodes, which shows
in Table 5.

The training time and testing time comparison of Tspformer
ith similar work by other authors show in Table 2. For a fair
omparison, similar work by other authors also uses a beam
earch method with a width of 10, which is exactly the same as
he parameters used by our beam search method Tspformer (BS).
he training model used by Tspformer (GS) and Tspformer (BS) is
he same, but the search method used in the inference phase is
ifferent, so the training time of the model is the same. For the
ame training model, due to the different search methods used,
he inference time used is also very different. The inference time
sed by the greedy method is very small, while the beam search
ethod requires a lot of inference time. However, the accuracy of

he beam search method is much higher than that of the greedy
ethod. The beam search method uses time in exchange for the
594
accuracy of the solution. From the examples of TSP20, TSP100,
and TSP200, it can be seen that Tspformer (BS) uses less time
than other similar works, whether it is the training time of the
model or the inference time of the inference test phase. From
the examples TSP500, TSP750, and TSP1000, it can be seen that
when the number of nodes exceeds 200, the similar work of other
authors cannot train the model due to insufficient memory. Only
our method Tspformer can train such a large node model.

From Table 3, we see that the training time of Tspformer is
less than that of other similar jobs. We only compared three very
similar works which use the Transformer network structure to
solve the TSP problems. The training time of Tspformer per epoch
with 100 iterations is reduced by about 30.2%(54 s), 29.8%(53 s),
30.6%(55 s)(Bresson et al. 179.38 s, Kool et al. 178.42 s, Deudon
et al. 180.35 s and Tspformer 125.68 s) in TSP200. When the
number of nodes exceeds 200, other similar tasks cannot run due
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Fig. 3. Ablation of training time.

Fig. 4. Ablation of memory usage.

o insufficient memory. However, Tspformer can continue to run
n the scale of 400, 600, 800, and 1000 city nodes. But the running
ime will be greatly increased, such as 672.57 s per epoch for
SP1000 task.
Table 4 is a comparison for memory usage of Tspformer with

ther similar works. As in Table 4, when the number of city nodes
eaches 800 and 1000, the similar work of other authors has to
top running due to insufficient memory. Only Tspformer can run
ormally on relatively large-scale nodes such as 800 and 1000.
or example, TSP1000 requires 7967 MB of memory. The memory
sage of Tspformer is reduced by about 1400 MB than that of
resson et al. Kool et al. and Deudon et al.
Table 5 shows a performance comparison of training on small

SPs and testing on large TSPs. We compare with kool’s work
Kool et al., 2018), the data in brackets is the test data of kool’s
ork. When the number of nodes exceeds 200, the kool’s work
annot train the model due to insufficient memory. When the
umber of nodes is 20, 100, and 200, our work is compared with
hat of kool. The data in the table is the optimal ratio. The optimal
atio is the ratio of the travel length predicted by the model to

he optimal value. The optimal value is obtained by Concorde and

595
Gurobi. Compared with kool’s work, our work has the following
advantages:

(1) We can train models on a scale of more than 200 nodes,
while kool cannot;

(2) On small-scale problems, except for a few, the optimal ratio
of most TSP instances is smaller than that of kool;

(3) We found that a model trained on a small scale can gen-
eralize to a 10X or even 100X larger model;

(4) We can also find that the model trained on 1000 nodes
can also test the data of 20 nodes, that is, the model trained on a
larger model can also be tested on a smaller scale, reflecting good
generalization.

5.3. Refining accuracy of results with greedy search and beam search

We use greedy search and beam search algorithms to improve
the accuracy of model prediction results, and the results are
shown in Table 1. After using greedy search and beam search,
Average Travel Length (ATL) and Optimal Gap Ratio (OGR) are
all reduced in all TSP instances. In the TSP20 instance, the ATL
reduced from 3.91 to 3.89 and the OGR reduced from 2.09% to
1.57% for Greedy search, the ATL from 3.89 to 3.84 and the OGR
from 1.57% to 0.26% for Beam search with the search width 10.
Similarly, the ATL reduced from 18.27 to 18.02 and the OGR
reduced from 10.19% to 8.69% for Greedy search, the ATL from
18.02 to 17.57 and the OGR from 8.69% to 5.97% for Beam search
with the search width 10 in the TSP500 instance.

It can be seen that through greedy search and beam search
technology, the accuracy of the prediction results is greatly im-
proved, and it can compete with the work of other authors.

5.4. The ablation

We also conducted additional ablation experiments comparing
the training time and memory usage.

As shown in Fig. 3, we can see that the training time of Tsp-
former is less than removing the masked Multi-Head Attention
module of the Decoder in Transformer, removing the Multi-Head
Attention module of the Encoder in Transformer, and the overall
Transformer architecture. As the number of city nodes increases,
more training time is saved in Tspformer network architecture.

Fig. 4 compares the ablation experiment of memory usage. If
only the masked Multi-Head Attention module of the Decoder is
deleted, the memory usage of the Transformer is slightly reduced.
If only the Multi-Head Attention module of the Encoder is deleted,
the memory usage of the Transformer will be more reduced.
This is because the Encoder is set to 6 layers, and more layers
occupy more memory space. However, when we use Tspformer,
its memory usage will be greatly reduced. As the number of
city nodes increases, more memory usage is saved in Tspformer
network architecture.

5.5. Experiments on real-world datasets

To evaluate our approach Tspformer, we performed experi-
ments on publicly available benchmark real-world dataset TSPLIB
(Heidelberg, 2005) which includes 110 problems in total in addi-
tion to the synthetic data experiments. As shown in Table 6, we
select only 12 of 110 problems in total to evaluate our method.
We randomly selected 12 of 110 problems from TSPLib for testing
according to the number of nodes from small to large. Due to
most of the data are similar, so we selected these 12 data repre-
sentatively, and the node sizes are about 50, 100, 150, 200, 300.
We use randomly generated data with node sizes of 50, 100, 150,
200, and 300 to train their corresponding models, and then we
use their respective models to test these 12 data that are close to



H. Yang, M. Zhao, L. Yuan et al. Neural Networks 161 (2023) 589–597

O
m
t

n
t
s
t
u
t
o
s
i

w
t
n
t
i
n
c
T
c

Table 5
Performance comparison of training on small TSPs and testing on large TSPs. We compare with the work of kool (Kool et al., 2018),
the data in brackets is the test data of his work. The data in the table is the optimal ratio. The optimal ratio is the ratio of the
travel length predicted by the model to the optimal value. The optimal value is obtained by Concorde and Gurobi.
Test

Train TSP20 TSP100 TSP200 TSP500 TSP750 TSP1000 TSP10000 TSP100000

TSP20 1.008(1.007) 1.017(1.019) 1.122(1.186) 1.141(1.182) 1.158(1.167) 1.233(1.247) 1.364(1.397) 1.823(1.912)
TSP100 1.083(1.089) 1.015(1.018) 1.104(1.112) 1.132(1.126) 1.145(1.152) 1.183(1.181) 1.252(1.236) 1.801(1.859)
TSP200 1.144(1.142) 1.137(1.143) 1.026(1.047) 1.129(1.137) 1.138(1.203) 1.161(1.163) 1.221(1.218) 1.792(1.784)
TSP500 1.212 1.153 1.125 1.037 1.114 1.153 1.192 1.753
TSP750 1.332 1.225 1.192 1.135 1.024 1.104 1.167 1.687
TSP1000 1.357 1.312 1.237 1.215 1.125 1.038 1.115 1.526
Table 6
The Tour Length (TourL) of the real-world dataset TSPLIB. OGR (Optimal Gap Ratio).
Instance OPT Deudon et al. Kool et al. Bresson et al. Tspformer.

TourL OGR TourL OGR TourL OGR TourL OGR

eil51 426 441 3.52% 431 1.17% 439 3.05% 437 2.58%
st70 675 691 2.37% 687 1.78% 694 2.81% 703 4.15%
kroA100 21282 22396 5.76% 22375 4.92% 22384 5.17% 22391 5.21%
rd100 7910 7962 0.66% 7951 0.52% 7986 0.96% 8053 1.81%
lin105 14379 14673 2.03% 14602 1.56% 14692 2.18% 14706 2.32%
pr124 59030 63496 7.83% 62102 5.21% 63471 7.52% 63709 7.93%
ch130 6110 6224 1.82% 6195 1.34% 6215 1.71% 6289 2.93%
ch150 6528 6698 2.53% 6682 2.42% 6691 2.50% 6721 2.96%
u159 42080 43293 2.88% 43195 2.65% 43218 2.72% 43437 3.22%
kroA200 29368 31505 7.27% 31478 7.18% 31611 8.12% 31887 8.58%
tsp225 126643 139278 9.98% 138413 9.29% 139002 9.64% 139704 10.31%
a280 2579 2671 3.57% 2606 1.05% 2638 1.54% 2696 4.54%
the number of nodes of our own model. The corresponding data
are 50 for eil51, st70; 100 for kroA100, rd100, lin105, pr124; 150
for ch130, ch150, u159; 200 for kroA200, tsp225; 300 for a280
respectively. We convert the 12 data selected from the TSPLib
dataset to the interval [0, 1]. The conversion rule is that the data
is 1-digit or 2-digit divided by 100, 3-digit divided by 1000, so
analogy. The final predicted result is multiplied by 100, 1000,
and so on. Because these actual data are only a special case of
randomly generated data, they also satisfy the requirements of
i.i.d. In terms of model selection, we choose the model closest
to the integer. For example, eil51 selects a randomly generated
training model of 50 nodes for testing, kroA100 and lin105 select
a randomly generated training model of 100 nodes for testing,
and other data are similar.

Compared with similar work by other authors, Tspformer’s
GR (Optimal Gap Ratio) is the largest, TourL (Tour Length) is the
ost considerable travel distance. Still, we traded less training

ime and memory usage at the cost of less performance loss.
In Table 4, the optimal gap is not the best, because this is

ot what we want to solve, the problem we want to solve is
he scale of the problem rather than the accuracy of the problem
olution. Many authors have done good work on the accuracy of
he problem, but the solution of large-scale problems has been
nsolvable for a long time due to memory constraints, which is
he problem that this paper aims to solve. By sampling, the scale
f the problem is enlarged at the expense of the accuracy of the
olution. Of course, if we use greedy search and beam search as
n Table 1, the accuracy of each test will be greatly improved.

More importantly, instead of generalizing a model trained
ith 100 nodes to a test case of 1000 nodes, we use the model
rained with 1000 nodes to directly solve the test case of 1000
odes. The model trained from these 1000 nodes can generalize
o 10000 nodes or even 100000 node test cases, which shows
n Table 5. By analogy, we can use the model trained with 10,000
odes to generalize to the test case of 1,000,000 nodes, so that we
an quickly obtain approximate solutions to large-scale problems.
his has important applications in the chip design of integrated
ircuits and so on.
596
6. Conclusion

We studied combinatorial optimization such as the TSP prob-
lems and proposed Tspformer to solve this problem in this paper.
Specifically, we designed the sampled scaled dot-product atten-
tion mechanism to address the challenges of quadratic memory
utilization and computational complexity in vanilla Transformer.
Also, the deleting of the Masked Multi-Head Attention module
of the decoder alleviates the constraint of standard encoder–
decoder architecture in terms of TSP combinatorial optimiza-
tion. Experiments on real-world data show the effectiveness of
Tspformer in solving TSP problems.
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