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Abstract— Cloud computing platforms enable applications to
offer low-latency services to users by deploying data storage
in multiple geo-distributed data centers. In this paper, through
benchmark measurements on Amazon AWS and Microsoft Azure
together with an analysis of a large-scale dataset collected from
a major cloud CDN provider, we identify the high tail latency
problem in cloud CDNs, which can substantially undermine the
efficacy of cloud CDNs. One crucial idea to reduce the tail latency
is to send requests in parallel to multiple clouds in cloud CDNs.
However, since application providers often have a budget for
using cloud services, deciding how many chunks to download
from each cloud and when to download chunks in a cost-efficient
manner still remain as open problems in our concerned scenario.
To address the problem, we present TAILCUTTER, a workload
scheduling framework that aims at optimizing the tail latency
while meeting cost constraints given by application providers.
Specifically, we formulate the tail latency minimization (TLM)
problem in cloud CDNs and design the receding horizon control
based maximum tail minimization algorithm (RHC-based MTMA)
to efficiently solve the TLM problem in practice. We implement
TAILCUTTER across multiple data centers of Amazon AWS and
Microsoft Azure. Extensive evaluations using a large-scale real-
world data trace (collected from a major ISP) illustrate that
TAILCUTTER can reduce up to 58.9% of the 100th-percentile
user-perceived latency, as compared with alternative solutions
under the cost constraint.

Index Terms— Cloud storage, tail latency, measurement,
optimization.

I. INTRODUCTION

CLOUD storage services are gaining tremendous popular-
ity in recent years by providing the appealing benefits of

low maintenance, easy access and elasticity for geo-distributed
online data storage. A recent study shows that the global cloud
storage market is expected to reach $56.57 billion by 2019,
with a compound annual growth rate of 33.1% [1]. The recent
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prosperities of cloud storage providers such as Amazon AWS
and Microsoft Azure are notable examples. Cloud storage
providers operate data centers that can offer Internet-based
content storage and delivery capabilities with the assurance of
service uptime and end-user perceived service quality.

The emergence of cloud storage services provides new
opportunities for application providers. In particular, applica-
tion providers can build a cloud storage-based content delivery
network (abbreviated as a “cloud CDN”) to provide low-
latency services to users without the high cost and complexity
of owning and operating geographically dispersed data centers
by themselves. As the user access latency is one of the most
important QoS metrics, a large amount of previous efforts
[2]–[13] focused on how to place data replicas in different
clouds and optimize the latency performance in cloud CDNs.

In many distributed systems, fetching data from a single
serving node is often associated with high latency variance.
This phenomenon, often called the “tail latency”, exists not
only in modern dedicated data centers [14], [15], but also
in cloud CDNs. The impact of high latency variance is
problematic for popular applications where even 1% of traffic
corresponds to a significant volume of user requests [16], and
for applications where the user is required to download several
objects and the user-perceived latency is constrained by the
object downloaded last (e.g. downloading chunks of a large
file distributedly stored in the Dropbox server).

As the first contribution in this paper, we identify the high
user-perceived tail latency problem in cloud CDNs, which
may significantly degrade user experience but has not yet
been efficiently addressed (§II). Our benchmark measurements
on Amazon AWS and Microsoft Azure show that the high
latency variance exists both within the cloud data center
and over the Internet. Quantitatively, we further analyze a
recent large-scale dataset collected from a major cloud CDN
provider named Xuanfeng [17], [18]. The dataset records
the latency of 4,084,417 file downloads in a whole week,
involving 783,944 users and 563,517 unique files. Surprisingly,
we find that the 100th-percentile download latency can be
up to 1076× of the median! These variances are caused by
many factors, including the competition of shared resources,
failure of equipment, link congestions, etc. [19], and it seems
almost impossible to avoid such variances. Therefore a feasible
latency optimization should live with the high variance.

To address the high tail latency problem in cloud CDNs
and enable application providers to avail of the low-cost
benefits provided by cloud services, we propose TAILCUTTER,
a novel workload scheduling framework lying between users
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and cloud storage data centers. There are many recent studies
in dedicated data centers that optimize tail latency by sending
redundant requests to multiple serving nodes and using the
response first returned [7], [14], [15], [20], [21]. Inspired by
the above studies, the key idea behind TAILCUTTER is to
issue requests in parallel to download different chunks of
the file from different clouds while meeting cost constraints,
under the assumption that files are replicated in each cloud.
Highly targeting at the cloud CDN scenario, TAILCUTTER

makes several domain-specific optimizations: (1) Since cloud
storage providers charge their customers (partially) according
to their bandwidth usage, and application providers often
have a budget for using cloud storage services, TAILCUTTER

optimizes the tail latency under the cost constraint given by
application providers; (2) Instead of using redundant requests,
TAILCUTTER issues multiple requests to download differ-
ent parts of the replica located in multiple clouds to avoid
bandwidth wastes; (3) To prevent link congestions caused
by bandwidth competition or other sources in data centers,
TAILCUTTER stands in a central view to schedule all requests,
decide when and how to download chunks from each cloud,
and manage user bandwidth, cloud bandwidth, and bandwidth
between user and cloud.

More specifically, in this paper we first formulate the Tail
Latency Minimization (TLM) problem that aims at optimizing
the tail latency while meeting application providers’ cost
constraint in cloud CDNs (§III). To our best knowledge, we are
the first to optimize the tail latency under the cost constraints
in cloud CDNs. Given the formulation, we then design the
Maximum Tail Minimization Algorithm (MTMA) which solves
the TLM problem in polynomial time (§IV). However the
applicability of MTMA is limited since it requires the com-
plete knowledge of the available bandwidth of each cloud,
the end-to-end bandwidth, and the workload of all requests in
an entire scheduling period. To further address this limitation,
we extend MTMA and design a more practical online algo-
rithm called Receding Horizon Control (RHC) based MTMA,
which schedules requests based on the bandwidth prediction
in a short future horizon and adjusts the scheduling results
over time to efficiently and robustly optimize the tail latency
under the cost constraints.

We implement TAILCUTTER system across a set of data
centers in Amazon AWS and Microsoft Azure (§V). We
conduct a trace-driven evaluation on our prototype using a
2-Terabyte real-world data trace (collected from a major ISP),
and the results demonstrate that TAILCUTTER is able to reduce
the tail latency by up to 73.3% as compared to other state-of-
the-art solutions. In addition, we also conduct a large-scale
simulation to evaluate the scalability of TAILCUTTER. The
results of the trace-driven simulation show that TAILCUT-
TER scales well under different sizes of workloads, and can
effectively cut up to 58.9% of the 100th-percentile tail latency
without draining the budget of application providers.

II. MOTIVATION

We begin with a measurement study to motivate our
work. In this section, we first quantify the high tail latency
problem in cloud CDNs. Then we introduce and analyze

Fig. 1. Illustration of the typical approaches to build cloud CDNs upon cloud
data centers.

the opportunity that leverages multiple clouds to reduce tail
latency. Finally we highlight the importance of considering
cost constraint when optimizing tail latency in cloud CDNs.

A. Background of Cloud CDNs

Cloud CDNs provide low-latency services to users with-
out the high cost and complexity of owning and operating
geographically dispersed data centers. Figure 1 illustrates the
typical approach of building cloud CDNs upon cloud storage
services. The application provider often stores data objects
in the cloud rented from cloud providers (e.g. Amazon AWS
or Microsoft Azure) to build the cloud CDN. In particular,
the client application can directly fetch data from the storage
service inside a cloud data center (e.g. Amazon S3) as shown
in Figure 1(a), or fetch data relying on an opened Virtual
Machine (VM) in the same data center (e.g. Amazon EC2)
as shown in Figure 1(b). The latter pattern is usually used
in scenarios with packet processing, e.g. the VM is used for
request authentication or data encryption/decryption.

B. Quantifying the High Tail Latency in Cloud CDNs

To quantify the high tail latency problem, we conduct a
measurement study upon two popular cloud providers Amazon
AWS and Microsoft Azure, together with an in-depth analysis
on a large-scale data set collected from a commercial cloud
CDN. Quantitatively, we define the user-perceived access
latency as the time for a user to completely download a certain
file from a cloud. In cloud CDNs, high latency variance is
very problematic because for popular applications even only
1% of their traffic corresponds to a significant volume of
requests [16]. In addition, worst-case performance matters
much more to applications that fetch multiple objects and
the operation completion time is constrained by the object
fetched last (e.g. downloading a large file in Dropbox which
is split into chunks and distributedly stored on the server).
In the following of this paper we use 95th, 99th, and 100th
percentile latency of all users to quantify the tail latency in
practice.

Quantifying Tail Latencies on AWS and Azure: To quantify
the access latency we develop a measurement tool that contains
a client and a server counterpart running on the cloud data
center. The client periodically sends requests to the server
to download files directly from the storage service or via a
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Fig. 2. High latency variance of downloading data from Amazon AWS or Windows Azure.

VM instance as shown in Figure 1, and then measure the
access latency of each request. Particularly, we deploy the
client on three machines located at U.S., Europe, and China
respectively, and run the server on the nearest Amazon AWS
or Microsoft Azure cloud data center located at west U.S.,
Ireland and Singapore respectively. In each test, we issue a
single GET request from the client to download a 10MB file
in every 2 mins in one day. We use tcpdump to record the
packet-level network traces and calculate the user-perceived
access latency. More specifically, for tests downloading files
directly like Figure 1(a), we measure the latency as the time
of completely downloading the file from the storage service.
For tests where the transmission relies on a VM instance as
shown in Figure 1(b), we measure and break down the total
latency into (1) the latency of fetching the file from the storage
service to the VM, and (2) the latency of delivering the file
from the VM to the client.

The cumulative distribution function (CDF) of the measured
access latency is plotted in Figure 2. We have made the
following key observations: (1) The access latencies of directly
downloading data from the storage service suffer from signif-
icant variation. As shown in Figure 2(a) and 2(d), the 99th
percentile access latency is at least 2× and up to 5× of the
median, and the 100th percentile access latency is at least 2.8×
and up to 6.4× of the median; (2) Downloading data via a
VM instance also suffers from high latency variation within the
data center and over the Internet. The 99th percentile latency
is 1.4-3.8× of the median, and the 100th percentile latency is
1.8-6.7× of the median between the VM and storage service
in the same cloud as shown in Figure 2(b) and 2(e); The 99th
percentile latency is 1.7-3.3× of the median, and the 100th
percentile latency is 2.1-7.2× of the median from the VM to
the client as plotted in Figure 2(c) and 2(f); (3) For VM-
relied downloads, the total access latency is dominated by the

latency between the client and the VM in the cloud; (4) High
tail latency is prevalent in cloud CDNs since it is observed in
both cloud providers and in different locations.

Analyzing Tail Latencies on QQ Xuanfeng: To further
understand the tail latency problem in cloud CDNs, we ana-
lyzed a large-scale dataset collected from a commercial cloud
CDN provider, QQ Xuanfeng [17]. QQ Xuanfeng is a major
provider of cloud CDN in China, processing over 30 million
users at the moment. The dataset we collected contains the
complete logs of QQ Xuanfeng for a week (Feb. 22-28, 2015),
involving 4,084,417 downloading tasks, 783,944 users and
563,517 unique files. Figure 5 plots the file size distribution of
the dataset collected from QQ Xuanfeng, in which large files
dominate (e.g. about 90% files are larger than 10MB).

We analyzed the access latency when fetching files differing
in sizes. We extract the downloading time and the fetched
file size from the dataset, and plot the CDF of the access
latency when fetched file size is around 100KB, 1MB and
100MB respectively. As shown in Figure 3, surprisingly the
99th percentile latencies for different file sizes are at least
31× and up to 49× of the median latencies, and the 100th
percentile latencies for different file sizes are at least 60× and
up to 376× of the median latencies. We also examine the tail
latency of downloading files from different IP prefixes, and
we plot the latencies of the top four IP subnetworks that have
most user requests in Figure 4. We find that the 99th percentile
latencies for the same file size from different areas are at least
17× and up to 359× of the median latencies, and the 100th
percentile latencies are at least 32× and up to 1076× of the
median latencies! The tail latency is much higher in a large-
scale commercial cloud CDN as compared to our benchmark
measurement, because these latency variances are random and
caused by many complex factors, including congestion, shared
resources competition, equipment failure, etc., and are almost
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Fig. 3. CDF of access latencies of downloading files differing in sizes.

Fig. 4. Access latencies of download requests from different IP prefixes.

Fig. 5. CDF of file sizes in QQ Xuanfeng traces.

impossible to prevent [3], [19]. Since the above root causes are
complex and diverse, in this paper we try to treat tail latency
as a black box and propose a comprehensive solution instead
of dealing with the sources one by one.

C. Leveraging Multiple Clouds to Reduce Latency

Since the latency of a single cloud data center suffers
from significant variance, a straightforward way to reduce tail
latency is to issue multiple requests to different data centers to
download data. To identify the effectiveness of using multiple
clouds, we place the same 10 MB replica on two nearest AWS
and Azure data centers. We extend the measurement tool to
enable the client to download a file by: (1) sending a single
GET request to the nearest data center to get the entire replica;
or (2) sending two redundant requests in parallel to the nearest
two AWS or two Azure data centers, and the first received
file will be used. The second method is originally inspired
by previous studies [7], [19], [22] focusing on reducing tail
latency in dedicated data centers. However at the same time it
incurs additional bandwidth cost due to the redundant requests.
In our experiment we propose a third method: (3) the client
issues two requests to download different parts of the replica,
e.g. one request downloads from the beginning while the
other one downloads from the end, and the download process
completes once the entire file is collected. Note that in the
third method, the data downloaded by each request may differ
in size but their sum is equal to the total file size.

We run the extended measurement tool at three locations
in U.S., Europe and China, and plot the CDF of the access

latency in Figure 6. The experiment provides the follow-
ing key insights: (1) naively leveraging multiple clouds to
download data (e.g. issuing redundant requests to different
clouds) reduces the 99th percentile user-perceived latency by
at least 11% and up to 61%, and reduces the 100th percentile
user-perceived latency by at least 5% and up to 73% on
AWS and Azure platforms; (2) the tail latency can be further
reduced by avoiding bandwidth wastes and finding a proper
data assignment for these requests to complete each of them at
the same time. In our experiment, issuing requests to download
different parts of replicas significantly reduces 99th percentile
user-perceived latency by at least 43% and up to 83%, and
reduces 100th percentile user-perceived latency by at least
33% and up to 64%. The measurement results show that given
a proper assignment, leveraging multiple clouds is indeed an
effective approach to reduce the latency variability.

D. Cost-Effectiveness Considerations

To use cloud storage services, application providers pay
money to cloud providers according to the bandwidth and the
storage usage of their applications. Generally, the bandwidth
cost is much higher than the storage cost, and cloud data
centers offering better latency/bandwidth performance might
be more expensive. Since application providers may have a
cost constraint for using cloud storage services, although we
can leverage parallel multiple clouds to reduce tail latency in
cloud CDNs, the concrete approach for all users to download
data (e.g. cloud selection and bandwidth assignment) should
be well designed to meet the cost constraint of application
providers.

E. Lessons Learned

In summary, we have identified three key insights from our
measurement study: (1) modern cloud data centers inevitably
suffer from high tail latency, which may significantly impair
the user experience; (2) a promising opportunity for optimiz-
ing tail latency is to properly schedule requests to multiple
clouds and manage the bandwidth for each request; (3) when
designing such a scheduler, the total cost incurred by data
transmission should not exceed the budget given by application
providers.

III. TAILCUTTER OVERVIEW AND

PROBLEM FORMULATION

Motivated by the key insights obtained from our mea-
surement study, we propose TAILCUTTER, a novel workload
scheduling framework in cloud CDNs to solve the high latency
problem. In this section, we introduce the system overview of
TAILCUTTER and then formulate the Tail Latency Minimiza-
tion (TLM) problem that aims at optimizing the user-perceived
latency while meeting the constraint of cost overhead.

A. TAILCUTTER Overview

As shown in Figure 7 TAILCUTTER contains three key com-
ponents in high level: the Request Scheduler, the Measurement
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Fig. 6. Tail latency reduction by leveraging multiple clouds.

Fig. 7. TAILCUTTER system overview and the problem scenario.

Agent, and the Local Proxy that work together to automatically
schedule user requests and manage the bandwidth.

Local Proxy: To execute a download task, the application
(e.g. a download manager for shared file systems or video
games) on end users links to TAILCUTTER’s Local Proxy,
which first sends a schedule query to the Request Scheduler
to obtain an assignment, and then follows the assignment to
download data from cloud CDNs. Specifically, the assignment
tells the user which cloud the client should send requests to,
and how much data to download from each cloud. Once the
assignment is received, the Local Proxy issues a set of GET
requests to different clouds. To reduce the bandwidth overhead,
GET requests issued by the Local Proxy download different
parts of the replica located in different clouds.

Measurement Agent: In every potential cloud, we build the
Measurement Agent to measure the bandwidth knowledge
of the cloud (e.g. the bandwidth distribution between the
cloud and every end user). The Measurement Agent periodi-
cally sends the observed bandwidth knowledge to the central
Request Scheduler for further scheduling. Particularly, for a

practical storage service in a cloud data center, e.g. Amazon
AWS, it is difficult to directly obtain the bandwidth knowledge
because of the limitation of the exposed storage APIs. There-
fore, we deploy the Measurement Agent in a VM instance as
a gateway of the storage service in the same data center. The
number of Measurement Agents (gateways) on a cloud can be
configured by the application provider. If more Measurement
Agents than one are configured, TailCutter can set multiple
Measurement Agents and assign each Measurement Agent to
measure the network conditions of different storage nodes on
the same cloud.

In practice, measuring the end-to-end bandwidth knowledge
in TailCutter does not involves significant overhead due to
the following reasons: (1) TailCutter provides each user a
limited set of cloud servers based on its location (e.g. only
the nearest N clouds are available for a certain user), and
it is unnecessary for each user to establish a connection to
every cloud data center to measure the end-to-end bandwidth;
(2) since the network performance might be similar for all
users from the same IP prefix to any particular data center [23],
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TailCutter leverages the historical information (e.g. the band-
width sampled in last slot) in the same IP prefix to approximate
the end-to-end bandwidth; (3) only under certain circum-
stances where no historical bandwidths can be used (e.g. for a
new user), the user has to establish a new connection to each
available cloud servers and probe the bandwidth by fetching
the first data chunk (similar to the method used in [24]); (4) the
bandwidth knowledge of a cloud can be delivered via a small
HTTP request, and is sent to the Request Scheduler in every
slot which is about tens of seconds so that the communication
overhead is inexpensive.

Request Scheduler: As the core component in TAILCUTTER

framework, the Request Scheduler maintains a single queue
for all requests, and leverages the workload and bandwidth
knowledge in each cloud to schedule user requests from all
users to cut tail latency. The application provider using the
TAILCUTTER framework owns an origin server that stores
all original data, which are linked to the Request Scheduler
located at the origin server. Replicas of the original data are
delivered to different cloud data centers asynchronously to
accelerate the download performance of geo-distributed users.
TAILCUTTER’s central Request Scheduler periodically collects
the bandwidth knowledge of cloud data centers from each
Measurement Agent, and determines the concrete assignment
for each user that specifies: (1) when to issue chunk requests,
(2) which cloud the client should issue chunk requests to,
and (3) how many chunks should be downloaded from each
cloud. Collectively, the decision is made according to the
workload and bandwidth distribution observed in each cloud
data center, the bandwidth distribution between each end user
and the cloud, bandwidth purchased by each user, the pricing
policy of different cloud providers, as well as the cost overhead
constraints given by the application provider. We will revisit
more details about how each component works together to
accomplish the optimization for tail latency in Section IV-C.

B. Problem Formulation

Now we formulate the Tail Latency Minimization (TLM)
problem across multiple clouds. In reality, a cloud provider
owns and operates multiple data centers, and each data center
belongs to only one provider. We assume that there are M
cloud data centers C = {C1, C2, ..., CM} indexed by i, and N
end users U = {U1, U2, ..., UN} indexed by j. Without loss of
generality, if a user requests multiple files, the requests need to
be scheduled one by one in our model. For ease of exposition,
we assume that time is slotted and each slot lasts for τ seconds.
There are K slots in a scheduling period and slots are indexed
by k. Requests of different users may arrive at different time
slots, and we define Aj as the arrive time slot of Uj . As we
have shown in our measurement study (Section II), the access
latency of each cloud data center inevitably suffers from
high variance because the available bandwidth may change
over time. In addition, for application providers who purchase
services (e.g. VM instance or storage) on the cloud, the
available bandwidth of a cloud site is allocated according to
the corresponding price policy [25]. Therefore, let uik denote
the total available output bandwidth of Ci in slot k which is

allocated based on the price policy. We denote the bandwidth
limit between Ci and Uj in slot k as dijk . Note that the end-
to-end bandwidth is not only limited by the congestion over
some intermediate links but also limited by the ISP based
on the amount of bandwidth purchased. Allowing users to
make multiple requests in parallel can in effect increase their
bandwidth, assuming that the bandwidth bottleneck is the data
center. If the bottleneck is the last mile, then making multiple
requests in parallel will not help. Since the bandwidth a user
has purchased is usually a fixed value provided by the ISP,
we assume there is an ISP-specific bandwidth constraint bj

for Uj .
Request and Bandwidth Assignment: Assume that for Uj the

size of the replica is Wj MB. A replica is split into multiple
ω MB small data chunks, and a GET request downloads a
certain number of data chunks. Hence we define the request
and bandwidth assignment vector xijk as the number of
chunks that Uj downloads from Ci in slot k. According to
the definitions we derive following properties: (1) the total

bandwidth assigned to Uj in slot k is ω ·
M∑

i=1

xijk , which should

not exceed the ISP-specific bandwidth constraint bj ·τ ; (2) the

total data size received by Uj is calculated as ω ·
M∑

i=1

K∑

k=Aj

xijk ,

which should be equal to the replica size Wj ; (3) the data size

delivered by Ci in slot k is ω ·
N∑

j=1

xijk and should not exceed

uik · τ ; (4) the size of data transferred from Ci to Uj in slot
k is ω · xijk and should be less than dijk · τ .

Total Cost: Cloud providers charge for their outgoing traffic.
In practice, some cloud providers charge the bandwidth cost
according to both the number of GET requests and the amount
of delivered traffic size. Moreover, the provider may charge
less per unit of data if the total data size grows. For example,
AWS charges $0.155 per GB data for the first 10TB data
transferred and it charges $0.115 per GB data for the next
40TB [26]. In our model, we assume that each download
operation from a user to a cloud data center is operated in a
single GET request, and we assume cloud Ci charges unit price
of Gi per data chunk in a certain scheduling period. Gi may
change according to the transferred data size and the specific
pricing model of different cloud providers. Therefore, the total

cost overhead in a scheduling period is
M∑

i=1

N∑

j=1

K∑

k=Aj

Gi · xijk .

In our TLM problem, we focus on the bandwidth cost because
it is dominant in the overall cost of building a cloud CDN.
We denote f as the total cost constraint in a scheduling period.

Fair User-Perceived Latency: Let binary variable yjk denote
the transmission state of Uj in slot k. The request of Uj

arrives at slot Aj , and yjk is 1 if only Uj has not finished
the download process in time slot k after time slot Aj . Note
that there might be some time slots in which the transmission
is paused and suspended (i.e. no data chunks are transferred to

Uj ,
M∑

i=1

xijk = 0, k ≥ Aj) and yjk remains at 1 in these paused

slots. Therefore yjk is a non-increasing value after the request
arrive time Aj . The user-perceived latency of Uj , which is
the time from request arrival at Aj to request download
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completion of Uj , can be formulated as Lj =
K∑

k=Aj

yjk. Note

that the size of replica (Wj) differs for different users, thus to
attain fairness we propose a fairness factor λ. We calculate
the fair user-perceived latency for Uj as Dj = Lj

(Wj/ω)λ .
When λ = 0, Dj is equal to the user-perceived latency of
Uj ; when λ = 1, Dj represents the per-chunk latency of Uj .
Here λ is a flexible parameter which can be adjusted to attain
fairness according to different scenarios. In Section V-A we
have a micro benchmark to discuss how to choose the value
of λ. Accordingly the maximum fair user-perceived tail latency
among all users is calculated as max{Dj}.

Objective: Summarily, the primary objective of the TLM
problem is to find a proper request and bandwidth assignment
for all users that minimizes the fair user-perceived tail latency
while satisfying the total cost constraint. Thus the TLM
problem can be formulated as follows.

min{max{Dj}}, where Dj =
Lj

(Wj/ω)λ
, Lj =

K∑

k=Aj

yjk

(1)

subject to :

ω ·
M∑

i=1

K∑

k=Aj

xijk = Wj , ∀j ∈ U (2)

M∑

i=1

N∑

j=1

K∑

k=Aj

Gi · xijk ≤ f (3)

ω ·
N∑

j=1

xijk ≤ uik · τ, ∀i ∈ C, k ∈ [1, K] (4)

ω · xijk ≤ dijk · τ, ∀i ∈ C, j ∈ U, k ∈ [Aj , K] (5)

ω ·
M∑

i=1

xijk ≤ bj · τ, ∀j ∈ U, k ∈ [Aj , K] (6)

M∑

i=1

xijk ≤ (Wj/ω) · yjk, ∀j ∈ U, k ∈ [Aj , K] (7)

M∑

i=1

xijk >yjk−yj(k+1)−1, ∀j∈U, k∈ [Aj , K] (8)

yjk≥yj(k+1), yjk∈{0, 1}, ∀j∈U, k∈ [Aj , K] (9)

xijk ∈ N, ∀i ∈ C, j ∈ U, k ∈ [Aj , K] (10)

yjk = 0, xijk = 0, ∀j ∈ U, k ∈ [1, Aj) (11)

Constraint (2) guarantees that the request from Uj down-
loads Wj data. Constraint (3) indicates that the total bandwidth
cost should not exceed the cost limit f in a scheduling period.
Constraint (4) requires that in every time slot, the total number
of data chunks delivered by Ci should not exceed the cloud
capacity. Constraint (5) requires that the available bandwidth
between a user and a cloud is limited by the user bandwidth
constraint. Constraint (6) requires that the total number of
data chunks requested by Uj should not exceed the ISP-
specific user bandwidth constraint. The specially designed
constraints (7) and (8) indicate that a user can download data
chunks from cloud data centers if and only if the transmission
does not complete. If k is the last slot of the data transmission

TABLE I

SUMMARY OF NOTATIONS

for Uj (i.e. yjk = 1 and yj(k+1) = 0), there must be some data

chunks transferred to Uj in k, i.e.
M∑

i=1

xijk > 0. Constraint (9),

(10) and (11) guarantee binary value yjk is non-increasing
after time slot Aj , and xijk is natural number. The notations
used in this paper are summarized in Table I.

Our TLM problem is essentially an instance of the Integer
Linear Programming (ILP) problem. We implement the ILP
formulation and solve it with CPLEX [27]. The typical running
time for the solver ranges from minutes to hours which is too
long to be practical. This also elicits the need for a more
efficient solution.

IV. SCHEDULING ALGORITHM IN TAILCUTTER

Now we introduce the design details of the scheduler in
TAILCUTTER framework. We first study a simplified scenario
with only two clouds in a single slot, and then propose the
Maximum Tail Minimization Algorithm (MTMA) to solve the
TLM problem. In addition, we propose the online Receding
Horizon Control based (RHC-based) MTMA to schedule user
requests more effectively in practical scenarios.

A. Feasibility Checking for Two Clouds in a Single Slot

We first solve the TLM problem by considering a simplified
scenario with two clouds in a single slot (M = 2, K = 1).
Since there is only a single slot, any feasible solution needs
to satisfy all users’ requests in this slot. Therefore our goal
in this scenario is to find a feasible solution that has the
minimum cost. Our basic idea to find a feasible solution is to
greedily let users download data from a cheaper cloud until the
cheaper cloud is fully loaded. Here we assume that for any user
Uj ∈ U the needed data size Wj is lower than the total
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Algorithm 1 Greedy Algorithm
Inputs: Cloud sites C, Users U , Cloud capacity ui, End-to-
end capacity dij , Cost per unit Gi

Outputs: xij

1: //Without loss of generality we assume that G1 ≤ G2

2: for all j ∈ U do
3: x1j ← min{Wj ,d1j ,bj}

ω , x2j ← Wj−x1j ·w
ω

4: end for

5: if
N∑

j=1

x2j > u2 or x1j + x2j > bj then

6: //Cannot find a feasible solution.
7: No feasible solution, return.

8: else if
N∑

j=1

x1j < u1 and
N∑

j=1

x2j < u2 then

9: //A feasible solution with minimal cost is found.
10: return all xij .
11: else
12: //Move δ workload from C1 to C2

13: l←
N∑

j=1

x1j

14: for j = 1 : N do
15: δ ← min{x1j, (min{d2j, bj} − x2j)}
16: x1j ← (x1j − δ), x2j ← (x2j + δ), l← (l − δ)
17: return all xij if l ≤ u1.
18: end for
19: No feasible solution, return.
20: end if

available bandwidth of Uj , i.e. Wj ≤ min{(d1j + d2j), bj}.
Otherwise there is no feasible solution.

Algorithm 1 shows the detail of our greedy algorithm.
Without loss of generality we assume that the cost of each
cloud satisfies G1 ≤ G2. We follow the next two steps to find a
feasible solution. First, we preferentially assign the bandwidth
of the cheaper cloud C1 to all users as much as possible,
as shown in line 2-4. If C2 is overloaded after the assignment,
or data chunks requested by user exceed the user bandwidth
constraint bj (line 5-7), there is no feasible solution. And if
neither cloud nor user bandwidth is overloaded, a feasible
solution can be found. (line 8-10).

Second, we consider the case where C1 is overloaded
but C2 still has available capacity. We adjust the bandwidth
assignment by gradually moving a portion of workloads from
C1 to C2 until we find a feasible solution where both clouds
have acceptable workloads (line 12-20). Algorithm 1 outputs
the optimal solution in O(N) in the two-cloud scenario, where
N is the number of users.

B. Maximum Tail Minimization Algorithm

We further study a more complex scenario with multi-
ple clouds in multiple slots, and design a polynomial time
optimal algorithm, named Maximum Tail Minimization Algo-
rithm (MTMA) to solve the TLM problem. The key idea of
MTMA is to search the optimal solution by performing the
following two steps: (1) transforming the TLM problem to
the Minimum Cost Maximum Flow (MCMF) problem, and (2)

Fig. 8. Problem transformation: single slot.

leveraging the binary search to explore the minimum latency
under the given cost constraint.

Transforming TLM to MCMF: We first transform the orig-
inal TLM problem to the MCMF problem by constructing a
flow graph G(V, E). We start the transformation from a simple
case with only one single slot as shown in Figure 8. Let the
vertex set V include all elements in the cloud set C, the user
set U , and a copy of U , denoted as U ′. In addition, we add a
source vertex s and a sink vertex t to V . We build four groups
of directed edge: (1) from s to each user in U ′; (2) from each
user in U ′ to its corresponding mirror in U ; (3) from each
user in U to all clouds in C; (4) from each cloud in C to t.

Each edge in E has two properties: (1) the link capacity,
and (2) the cost of each data chunk delivered by the link.
We then assign the link capacity and cost for each edge in
the flow graph. First, for edges bridging the source s and U ′

j ,
we assign the link capacity Wj

ω and the cost is set to zero.
Second, for edges linking U ′ and U , we set the link capacity
to (bj · τ)/ω and set the cost to zero. For edges between Uj

and Ci, we set the link capacity to the end-to-end bandwidth
constraint dij , while setting the cost to zero. In addition, we set
the capacity and cost of the edge between Ci and the sink t
to ui and Gi respectively.

Hence we obtain the flow graph as shown in Figure 8 and
the original TLM problem is then transformed to the MCMF
problem: given a flow graph G(V, E) where each edge has a
capacity and a cost for delivering data chunks, how to assign
the number of data chunks in every edge to deliver all data
chunks from the source s to the sink t, while minimizing the
total cost. If the minimum cost of the MCMF problem is lower
than the cost constraint, then the feasible assignment for the
MCMF problem is the optimal solution for the original TLM
problem that minimizes the latency under the cost constraint.

Next we extend the single-slot flow graph in Figure 8 to
work in the multi-slot scenario. We extend the vertex set V
by making Ci and Uj in slot k as new vertexes denoted as Cik

and Ujk, as shown in Figure 9. Let D denote the maximum
fair user-perceived latency of all users, i.e. Dj ≤ D. Thus the
request of Uj completes after Aj and before Aj + D · (Wj

ω )λ.
We construct the flow graph in multi-slot scenario following
the methodology introduced above, but we only build an edge
between Cik and user Ujk in slots between Aj and Aj + D ·
(Wj

ω )λ. We set the link capacity of edges from s to U ′
j to Wj

ω ,
while setting the cost to zero. For edges from U ′

j to Ujk we
set the capacity to bj ·τ

ω and set the cost to zero. Similarly, for
edges from Ujk to Cik we set the link capacity to dijk·τ

ω and
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Fig. 9. Problem transformation: multiple slots.

set the cost to zero. Finally for edges from Cik to t, the link
capacity is set to uik·τ

ω and the cost is set to Gi. Therefore,
as shown in Figure 9, let GD(V, E) denote the constructed
flow graph, our TLM problem in the multiple-slot scenario is
then transformed to the problem of finding the minimum D
guaranteeing that GD(V, E) has a feasible MCMF solution.

Searching the Optimal Solution: We then perform binary
search on GD(V, E) to find the minimum D and the cor-
responding data chunk assignment (i.e. xijk) on each edge.
Initially we set the minimum Dleft = 0 and set Dright to
be a large enough delay DMAX , e.g. the largest fair user-
perceived latency observed in history. We search the minimum
D between Dleft and Dright that generates a feasible solution
for the corresponding MCMF problem. Algorithm 2 shows
the design details of MTMA. After initialization (line 1-2),
in each iteration of the binary search we first construct a
flow graph GD(V, E) and solve the corresponding MCMF
problem (line 4-5). The optimal D is found if the flow
graph has a feasible solution, while the total cost is less
than the constraint f under D but exceeds f under D − 1
(line 6-17). Our MTMA can optimally solve the problem
in polynomial time. The complexity of MTMA is O(V E ·
log(V )·log(V S)·log(DMAX)), where O(log(DMAX)) is the
complexity of the binary search. O(V E · log(V ) · log(V S))
is the complexity of solving the MCMF problem, where S
is the maximum cost of edges. The runtime of MTMA is
O(K2MN(M +N)log(K(M +N))log(KG(M +N))logD)
where G is the maximum cost of all edges.

C. RHC-Based MTMA

Ideally, the above MTMA can optimally solve the TLM
problem in polynomial time. However the MTMA suffers from
a limitation that all related knowledge (e.g. cloud bandwidth
ui and request arrive time Aj) in a scheduling period (e.g.
[k, k + K − 1]) should be known in advance when we run
MTMA for scheduling. In practice, such perfect knowledge is
not available, making it difficult to find such optimal solutions
using MTMA.

To overcome the above limitation, we develop the Receding
Horizon Control based (RHC-based) MTMA by extending the
MTMA to work at online mode. The key idea of the RHC-
based MTMA is: while the perfect knowledge in an entire

Algorithm 2 Maximum Tail Minimization Algorithm
Inputs: Cloud sites C, Users U , Cloud capacity uik, End-to-
end capacity dijk , User capacity bj , Request data amount Wj ,
Cost per chunk Gi, Cost constraint f
Outputs: D, xijk

1: Dleft ← 0, Dright ← DMAX

2: D ← Dleft+Dright

2
3: while TRUE do
4: Construct the graph GD(V, E) according to D, C, U ,

uik, dijk , bj , Wj , Dj , Gi, f .
5: Solve GD(V, E) by MCMF to get {xijk}.
6: if {xijk} does not exist then
7: D = D+Dright

2
8: else

9: cost(D)←
M∑

i=1

N∑

j=1

K∑

k=Aj

xijk ·Gi

10: if cost(D) ≤ f then
11: if cost(D − 1) > f then
12: break, return {xijk}, D.
13: else
14: D = D+Dleft

2
15: end if
16: else
17: D = D+Dright

2
18: end if
19: end if
20: end while

future schedule period may not be available, it is possible
that reasonably accurate throughput prediction can be instead
obtained for a short horizon to the future, e.g. in [k, k+H−1],
H < K . The intuition here is that the network conditions
are reasonably stable on short timescales and usually do not
drastically change during a short horizon [28]. Based on
this insight, we can run MTMA using the prediction in the
horizon to obtain all assignments in [k, k + H − 1], and then
move the horizon forward to [k + 1, k + H ]. This scheme is
known as receding horizon control (RHC) [29], and is widely
used in different domains, ranging from industrial control to
navigation. The general benefits of RHC are that RHC can
utilize predictions to optimize a complex control objective
online in a dynamical system under constraints.

Algorithm 3 illustrates the details of the RHC-based
MTMA. Specifically, given that a receding horizon covers
H sequential time slots, the RHC-based MTMA iteratively
executes four key steps in each slot k:

• Predicting (lines 3-5): Predict the bandwidth in the cur-
rent horizon [k, k + H − 1]. Note that our goal in this
paper is not to design a prediction mechanism and hence
we rely on existing approaches. Naturally, improving the
accuracy of the prediction will improve the gains achieved
via RHC-based MTMA;

• Checking (lines 6-9): To accomplish robustness and
efficiency, in each iteration we check the accuracy of
prediction in the last slot k − 1. If the last prediction
in slot k−1 matches the observed real bandwidth in slot
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Algorithm 3 Adaptative RHC-Based MTMA
Inputs: Cloud sites C, Users U , Current Cloud capacity
ui[1,k], Current End-to-end capacity dij[1,k], User capacity bj ,
Request data amount Wj , Cost per chunk Gi, Cost constraint
f
Outputs: xijk

1: Initialize
2: for k = 1 to K do
3: //Step 1: Predicting
4: d̂ij[k,k+H−1] = BandwidthDPred(dij[1,k])
5: ûi[k,k+H−1] = BandwidthUPred(ui[1,k])
6: //Step 2: Checking
7: if Predictionk−1 matches the observed value in slot

k − 1, and there are no unscheduled requests then
8: Go to step 4.
9: end if

10: //Step 3: Scheduling
11: Rj[k,k+H−1] = Rj[k−1,k+H−2] −Rj(k−1) + Rjk

12: Call MTMA with Rj[k,k+H+1] , d̂ij[k,k+H−1] , ûi[k,k+H−1]

and favg = f · H
K to calculate xij[k,k+H−1]

13: //Step 4: Applying
14: Follow xijk to download data for each user.
15: end for

k − 1, and there are no unscheduled requests (e.g. new
or remaining requests), we skip the scheduling step and
go to the applying step directly. Note that there is a case
where some requests for large files may not finish in one
horizon, and these remaining requests will be scheduled
next time when executing the scheduling step;

• Scheduling (lines 10-12): We first calculate the total num-
ber of requests from each user Uj in horizon [k, k+H−1],
denoted as Rj[k,k+H−1] (line 11). Rj[k,k+H−1] equals to
the sum of unfinished requests Rj[k−1,k+H−2]−Rj(k−1)

which have not been downloaded yet after slot k−1, and
new requests Rjk arriving in slot k. Secondly, given the
predicted bandwidth in horizon [k, k + H − 1], we call
MTMA to schedule all requests and obtain assignments
x in [k, k + H − 1] (line 12). Note that we calculate the
average cost constraint for each horizon (favg = f · H

K )
and use it as the input for MTMA. Since the scheduling
step outputs the assignment for [k, k + H − 1], in next
slots the scheduling step can be skipped if the bandwidth
does not drastically change and all requests have already
been scheduled;

• Applying (lines 13-14): Finally we apply the assignment
in current slot k, i.e. for Uj , and start to download xijk

data chunks from Ci.

Practical Bandwidth Predictor: Developing good predictors
for different scenarios is beyond the scope of the paper.
Building on insights from prior work, we use the harmonic
mean of the observed throughput of the last 5 slots to estimate
the bandwidth in current horizon, because this method is
robust to outliers in bandwidth estimates [30]. Besides, for
requests from new users without prior bandwidth knowledge,
we estimate the bandwidth by calculating the harmonic mean

Fig. 10. An example of how RHC-based MTMA moves horizon over time.

of the observed throughput of other users from the same IP
prefix, since Internet latencies to any particular data center are
similar from all end-hosts in the same prefix [23].

Workflow Inside TAILCUTTER: Next we explain the work-
flow of the RHC-based MTMA in the architecture of TAIL-
CUTTER. In every slot the available bandwidth of each cloud
and the end-to-end bandwidth are measured by the Measure-
ment Agent. The Request Scheduler then collects the measure-
ment results and predicts the bandwidth in the current horizon.
After that the Request Scheduler checks the correctness of
the last prediction and whether there remain unscheduled
requests. If a drastic bandwidth variance is observed or there
are unscheduled requests, the MTMA is invoked to compute
new assignments which are later applied to each user.

Figure 10 plots an example to illustrate how RHC-based
MTMA works over time. Assume the horizon covers five time
slots, at slot t0 the request scheduler predicts the available
bandwidth d̂ij[1,5] and ûi[1,5]. If the prediction d̂ij0 and ûi0

in last slot t0 do not approximately match the observed
bandwidth dij0 and ui0 or there are unscheduled requests,
then the Request Scheduler calculates the total number of
unfinished and newly arrived requests of each user, and runs
MTMA to obtain an assignment in [t1, t5]. Otherwise all
users just follow the assignment made in the last schedule to
download data. After that the horizon moves forward to [t2, t6]
in the next iteration.

This workflow has several qualitative advantages. First,
the RHC-based MTMA leverages both bandwidth prediction
and the cost-effectiveness of using multiple clouds in a prin-
cipled way. Second, compared to the previous optimization
in cloud CDNs [2], [3], our solution smooths our prediction
error at each slot and is more efficient and robust to prediction
errors. Specifically, by checking the correctness of the predic-
tion over a moving horizon, large prediction errors for one
particular request will have a lower impact on the performance.

V. PERFORMANCE EVALUATION

To evaluate the effectiveness of TAILCUTTER, we build
the TAILCUTTER prototype on commercial cloud storage
services and conduct a trace-driven evaluation using real-
world traffic collected from a major ISP. In addition, we also
conduct an extensive simulation to evaluate the performance
of TAILCUTTER at scale.

A. TAILCUTTER Implementation

We implement the TAILCUTTER server over five data
centers across Amazon AWS and Microsoft Azure (M = 5),
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Fig. 11. TAILCUTTER’s implementation on multiple cloud providers.

and we deploy the client counterpart on 12 geo-distributed
VMs, as shown in Figure 11. We discuss the details of each
key component in turns next.

Request Scheduler: We deploy the Request Scheduler in
a Linux server with a 3.3 GHz Intel Octal Core CPU and
16 GB memory. We run our scheduling algorithm to manage
bandwidth and make assignments for user requests based
on the information collected from each Measurement Agent
in every slot. The Request Scheduler stores access tokens
of every cloud in a SQLite database and before the first
scheduling period replicas are delivered to each cloud data
center via the specific cloud API given by cloud providers.

Measurement Agent: We implement the Measurement Agent
in an Amazon EC2 instance or a Windows Azure VM instance
inside each cloud data center. Since the data in the storage
service are delivered to the user relying on the VM instance,
our Measurement Agent invokes cloud-specific APIs to fetch
data from the storage service and uses tcpdump to collect
network traces and calculate the bandwidth information, which
is periodically sent to the Request Scheduler over HTTP.

Local Proxy: We implement the Local Proxy as a library in
the end-host that exposes TAILCUTTER API to applications.
To download a file, the Local Proxy issues a set of HTTP-GET
requests to multiple cloud data centers following the assign-
ment made by the Request Scheduler.

B. Experimentation Setup

Trace Collection: We collect a real-world data trace from
QQ Xuanfeng on February 24, 2015 to evaluate the sensitivity
of TAILCUTTER with different fairness factors. This trace
contains 552 thousand flow records. Then we use a large scale
real-world data trace to evaluate TAILCUTTER. The trace is
generated from 99 collection points by a local major ISP on
January 10, 2013. The trace data capture about 821 million
flow records (about 2 Terabytes). Each record corresponds to
the information of one flow which contains the user IP, server
IP, flow time stamps, downloaded data size but without any
personal data. We randomly pick workloads from 12 IPv4 sub-
networks (/24) from our data trace as the workload of user
requests and replay them on each VM in our experiment.

Methodology: We first use the real-world data trace from
QQ Xuanfeng to evaluate the sensitivity of TAILCUTTER

with different fairness factors. We further use the real-world
data trace to evaluate our TAILCUTTER prototype from four
aspects: (1) the ability in cutting tail latency; (2) the cost over-
head; (3) the efficiency of executing the scheduling algorithm;

Fig. 12. User-perceived latency of TAILCUTTER with various fairness
factor λ.

and (4) the cost-effectiveness in optimizing user-perceived
tail latency. Then we conduct a large scale simulation to
demonstrate the effectiveness of TAILCUTTER at scale. In our
experiment, the scheduling period T is set to 1 hour and
each slot lasts for 30 seconds (i.e. K = 120, and τ = 30s).
In our current implementation of the RHC-based MTMA we
set the horizon length H = 5, and we set the cost overhead
of each cloud according to the corresponding pricing policy
of Amazon AWS and Microsoft Azure [31], [32].

Comparison: In our experiment we compare the perfor-
mance of TAILCUTTER with other four solutions focusing
on request scheduling in cloud CDNs: (1) GRP [2] which
sends a single request to the nearest cloud to download data
under the cost constraint. GRP can work as an offline or online
scheduler, depending on whether the bandwidth and request
knowledge of the entire period is known at the scheduling
time; (2) CosTLO [3] that issues redundant requests to nearby
clouds to reduce the tail latency and total cost overhead;
(3) Parallelism2, which leverages the basic idea we explored
in Section II-C to send two parallel requests to nearby clouds
and download different parts of the replica to save the cost
overhead; (4) Parallelism4, which leverages the basic idea
of TAILCUTTER to simply send four parallel requests to
nearby clouds but not in a cost-efficient manner, and download
different parts of the replica to complete the downloading task.
Note that Parallelism4 is a simplified version of TAILCUTTER

which does not take the cost constraint into consideration.

C. Sensitivity of TAILCUTTER Fairness Factor λ

Figure 12 plots user-perceived latency of TAILCUTTER

when we adopt different fairness factors λ. User-perceived
latency of MTMA is much different from each other with
different λ. However, user-perceived latency of RHC-based
MTMA is almost similar to each other with different λ,
because RHC-based MTMA divides the whole schedule to
multiple small horizons and schedules the assignment in these
small horizons dynamically.

When λ = 0, the objective of the TLM problem is to min-
imize the maximum user-perceived latency while satisfying
total cost constraint. 100th percentile user-perceived latency
when λ = 0 reduces by 23% compared to that when λ = 1.
However 0-99th percentile user-perceived latency when λ = 0
is much higher than others obviously. This is because in this
setting MTMA treats all users who request different sizes of
replica equally, and it spends more bandwidth resources on
the maximum of user-perceived latency, which may hurt the
performance of most users. Therefore, adopting λ = 0 is more
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Fig. 13. Verification of TAILCUTTER’s ability to reduce fair user-perceived
latency variance of each user.

suitable in specific traces where the size of different users is
similar.

When λ = 1, the objective of the TLM problem is
to minimize the maximum of per-chunk latency. The user-
perceived latency of most users when λ = 1 outperforms
others in this real-world data trace in view of different sizes
of replica for different users. As a result, adopting λ = 1 is
more suitable when there is a big difference of the size of
replica among different users, which is common in most real-
world data traces (e.g. Traces of TAILCUTTER prototype and
a large-scale simulation). Therefore we adopt λ = 1 in the
following evaluation.

D. Ability to Reduce Access Latency

TAILCUTTER is able to satisfy the cost overhead constraint
and optimize fair user-perceived latency by properly schedul-
ing user requests to different cloud data centers. We first
evaluate TAILCUTTER’s ability to reduce tail latency and
Figure 13 plots the user-perceived access latency under dif-
ferent scheduling mechanisms using the same data trace. For
TAILCUTTER we set the cost constraint to $1700. We observe
that TAILCUTTER can effectively decrease fair user-perceived
latency and also reduce the latency variance as compared to
other alternatives. More specifically we made the following
observations: (1) GRP gets the worst latency performance,
in both offline and online modes. This is because GRP does
not leverage multiple clouds to schedule user requests and
hence some users suffer from high latency due to the con-
gestion, server outages, etc.; (2) TAILCUTTER, CosTLO, Par-
allelism2 and Parallelism4 can significantly reduce the 100th
percentile access latency compared to GRP, since they explore
multiple clouds to boost the latency performance; (3) our
RHC-based MTMA reduces the 100th percentile latency of
CosTLO and Parallelism2 by 45% and 32% respectively,
because RHC-based MTMA issues requests to download dif-
ferent parts of the replica, and has a central view to manage
the bandwidth for all requests to avoid the impact of con-
gestion; (4) Parallelism4 reduces the 100th percentile latency
of MTMA by 2.7%, because Parallelism4 leverages one key
idea of TAILCUTTER which is using multiple clouds and
downloading different parts of replica, and leaves cost budget
of the cloud provider out of consideration; (5) the MTMA
outperforms other schedulers except for Parallelism4 because
it leverages the perfect bandwidth knowledge in a scheduling
period to obtain the optimal solution.

We further examine the performance of each scheduler
by evaluating the access latency under different workloads.

We define request frequency as the number of requests arriving
in one slot and then divide our original trace into two cate-
gories: (1) light workload, in which the request frequency is
less than 100 on average; and (2) heavy workload, containing
more than 100 requests per slot on average. We then replay
both workloads under different schedulers and Figure 14
shows the results of tail latencies.

We observe that TAILCUTTER’s tail latency profile, even at
the 100th percentile, degrades proportionally with the increase
in system load. Specifically, for 95th, 99th and 100th percentile
of latency in light workload, the MTMA in TAILCUTTER

outperforms other schedulers by up to 70.6%, while the
RHC-based MTMA outperforms other alternatives by up to
69.8%. The latency reduction is mainly caused by leveraging
multiple clouds and properly managing the bandwidth for each
request. In addition, for 95th, 99th and 100th percentile of
latency in the heavy workload, the MTMA in TAILCUTTER

outperforms other solutions by up to 73.3%, and the RHC-
based MTMA in TAILCUTTER outperforms others by up
to 72.6%. Latency improvement of TAILCUTTER in heavy
workload is better than that in light workload. This is due to
the fierce competition for bandwidth in the heavy workload,
yet TAILCUTTER stands in a central view to schedule requests
and manage bandwidths to avoid congestions in the cloud.

Cost Comparison: Besides the latency performance which
significantly affects user experience, the cost is also a very
important metric for application providers. We compare the
cost overhead of all schedulers in both light and heavy
workloads. As shown in Figure 14(d), for the light work-
load, the MTMA in TAILCUTTER reduces up to 75.9% cost
overhead compared to other schedulers, and the RHC-based
MTMA in TAILCUTTER reduces up to 60.1% cost overhead.
For the heavy workload, our MTMA and RHC-based MTMA
can reduce up to 72.9% and 43.9% cost overhead respectively.
This is because TAILCUTTER is adaptive to the workloads
and would properly choose the best clouds under the cost
constraint. The cost overhead of CosTLO in both light and
heavy workloads are much higher than others since it issues
redundant requests to download data and inevitably involves
additional cost due to the bandwidth waste.

E. Cost-Effectiveness

Since cloud prices vary considerably with bandwidth and
region [33], TAILCUTTER dynamically schedules requests
and optimizes the fair user-perceived latency under the cost
constraint. Intuitively, given a higher budget, TAILCUTTER

can achieve lower downloading latency but at a higher cost.
To quantify how TAILCUTTER reduces the tail latency under
different budgets, we change the overall cost overhead con-
straint and evaluate the 100th percentile latencies.

Figure 15 depicts the 100th percentile latency as a function
of the cost constraint f . At the higher end of the examined
range of budget f , TAILCUTTER significantly reduces the tail
latency by making more users download data from a faster but
more expensive cloud to speed up data transmission. As the
budget f decreases, latency increases because TAILCUTTER

tries to find the cheaper clouds to serve users or select
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Fig. 14. Fair user-perceived tail latencies of different schedulers under light and heavy workloads.

Fig. 15. Cost-efficiency evaluation in satisfying various cost constraints.

fewer cloud data centers to process user requests. Because
of the lower available bandwidth and resource competition,
the latency increases. At the lower budget f , the latency of the
RHC-based MTMA is slightly higher than the basic MTMA.
This is because the RHC-based MTMA needs to schedule
requests under available cost budget horizon by horizon, and it
does not have the perfect knowledge of bandwidth and request
distribution to schedule requests and manage bandwidth under
the budget f .

F. Running Time in Practice

To evaluate the running time in practice, we run eight
different schedulers: (1) straightforward scheduler by solving
the ILP, (2) GRP offline, (3) MTMA, (4) RHC-based MTMA,
(5) CosTLO, (6) Parallelism2, (7) Parallelism4 and (8) GRP
online to make scheduling decisions for all the requests from
12 subnetworks in an hour. We repeat the scheduling under
cost constraint ranging from $1000 to $4000, and calculate the
average time of making a schedule. As shown in Figure 16,
solving the original integer linear programming problem by
CPLEX to schedule requests of a period consumes more than
half an hour, which is not feasible in a real system. However,
even though MTMA costs less computation time than ILP,
consuming 101s is infeasible for a real-world workload mon-
itor system. The RHC-based MTMA in TAILCUTTER only
consumes 0.12s to obtain the scheduling results in a horizon,
much more feasible for a real-world workload monitor system.
In fact, many scheduling agents are needed in a large system,
and Jiang et.al. propose solutions for agent selection in this
situation [34].

Fig. 16. Efficiency comparison of different scheduling algorithms.

G. Simulation at Scale

In the above experiments we evaluate our TAILCUTTER

prototype and demonstrate the effectiveness to reduce fair
user-perceived tail latency while satisfying the cost con-
straint. We finally conduct a large scale simulation to eval-
uate TAILCUTTER at scale. We set 20 cloud data centers
(M = 20) and select 4 workloads differing in the number
of subnetworks from our trace data. These four workloads
cover users from about 100, 200, 300 and 400 subnetworks
respectively. The TAILCUTTER simulator is built using Matlab
in around 1000 lines code. We set the bandwidth distribution
and the pricing policy following a similar way in our prototype
experimentation. Here we compare the results of five online
alternatives in large-scale deployment scenarios.

Figure 17 plots the CDF of fair user-perceived latency of all
requests in different workload scales. The fair user-perceived
latency increases as the scale of workload increases because of
more resource competitions. We find that RHC-based MTMA
reduces up to 58.9% 100th tail latency as compared to other
schedulers. This result indicates that TAILCUTTER can wisely
schedule user requests to different cloud data centers and
avoid high tail latency when network suffers from high latency
variance.

H. Bandwidth Utilization

To further explore the advantage of TAILCUTTER, we plot
the bandwidth utilization of all cloud servers in Figure 18.
The bandwidth utilization of GRP keeps limited steadily,
hence GRP has an obvious tail latency. CosTLO uses much
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Fig. 17. CDF of fair user-perceived latency of replica with different system workloads.

Fig. 18. Bandwidth utilization of different scheduling algorithms.

more bandwidth than all other solutions because it sends
redundant requests to multiple clouds, as a result, the tail
latency of CosTLO is reduced compared to GRP. Parallelism2,
TAILCUTTER and Parallelism4 use more cloud bandwidth
than GRP since they send parallel requests to multiple clouds,
so they have better latency performance.

VI. DISCUSSION

Practicality of a Large-Scale Deployment: There are band-
width measurements necessary for TAILCUTTER to schedule,
so it is valuable to discuss whether TAILCUTTER can be
used in large-scale deployment scenarios. Firstly, even though
Request Scheduler seems to store a lot of states (bandwidth
measurements of the user side bj , from user to cloud dijk ,
and cloud side uik), actually it only stores limited states that
are a horizon of latest bandwidth measurements. When new
bandwidth measurements in the current slot come, Request
Scheduler would delete old bandwidth measurements and add
new results. Secondly, the basic idea of scheduling or control-
ling according to historical bandwidth measurements is widely
used in many areas in industry, such as congestion control and
video streaming. For example, BBR (Bottleneck Bandwidth
and RTT) [35] which measures bottleneck bandwidth and
round-trip propagation time to adjust packet send rate, is being
deployed on Google and YouTube Web servers, substantially
reducing latency; BBA (Buffer-Based Algorithms) [36] which
chooses the video rate based on immediate past throughput
achieves a significant performance improvement in Netflix.

As a result, TAILCUTTER is possible to be used in large-scale
deployment scenarios.

Fairness to Regular Users: Since TAILCUTTER involves
a local proxy, it is necessary to discuss whether TAILCUT-
TER is fair to regular non-TAILCUTTER users. Here we will
compare the cloud systems with TAILCUTTER and without
TAILCUTTER. The influence of non-TAILCUTTER users in
TAILCUTTER architecture depends on where the tail happens,
and TAILCUTTER does not have a negative effect on most
scenarios. When the bottleneck is in the user bandwidth of
non-TAILCUTTER users or bandwidth from non-TAILCUTTER

users to cloud, there is no difference whether TAILCUT-
TER is used. When the cloud which non-TAILCUTTER users
request is not overloaded, there is no impact on these non-
TAILCUTTER users. When the cloud which non-TAILCUTTER

users request is overloaded, TAILCUTTER users would send
parallel requests to balance the load of clouds, which even has
a positive impact on these non-TAILCUTTER users.

VII. RELATED WORK

A considerable amount of research has been done on
optimizing the performance of cloud storage services.

Optimizing QoS in Cloud CDNs: A lot of research
has been done for optimizing the QoS in cloud CDNs
[2]–[9], [37]–[40]. Authors of [10] and [11] proposed algo-
rithms to optimize total storage and update cost. They used
the assumption that requests can be issued from any node,
but ignored retrieval cost. All solutions described above are
static in nature in that they simply assume that the link quality
between the client and the cloud is constant. They ignore the
latency variance within cloud data centers or over the Internet.

Improving Performance Inside Cloud Data Centers: There
are many recent studied working on redesigning storage
systems and data centers to offer bandwidth guarantees to
tenants [41], ensuring predictable completion times for TCP
flows [14], [42], [43], or meeting tail latency Service Level
Objectives (SLOs) inside data centers [44]–[49]. IOFlow [44]
introduces a QoS architecture for controlling congestion via



1626 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

rate limiting and prioritization of storage and network I/O.
PriorityMeister [48] addresses how to automatically config-
ure priorities and rate limits to meet tail latency SLOs using
a Deterministic Network Calculus (DNC) analysis. SNC-
Meister [45] shows significant improvements in admission
control when using the probabilistic analysis. These stud-
ies focus on optimizing the tail latency for small requests
within data centers, and they complement our study since
TAILCUTTER instead satisfies cost constraint for applications
deployed on the cloud and optimizes user-perceived latency
for larger requests. In addition, several recent works study
similar scheduling problems but in the context of big data
systems. TetriSched [50] introduces a new cluster scheduler
that optimizes when and where to run jobs so as to improve
performance in heterogeneous clusters. Rayon [51] investi-
gates the reservation-based scheduling to guarantee stringent
SLAs of jobs. Our scenario is targeted at cloud CDNs, and
therefore makes many domain-specific choices (e.g. leveraging
multiple clouds and considering the price factor) to optimize
user-perceived latency while meeting the given cost constraint.

Reducing Latency Variance of Cloud Services: The
approach of issuing multiple requests to different clouds to
reduce tail latency has been considered previously [7], [19],
and Shah et al. [52] characterize the settings under which
redundant requests help, and design scheduling policies
that employ redundant-requesting to reduce latency. In [53],
Joshi et al. analyze how redundancy affects the latency and
propose a general redundancy strategy for an arbitrary ser-
vice time distribution. But the focus has primarily been on
understanding the implications of redundancy on system load.
In contrast, our work formulates and addresses the problem
of how to issue multiple requests to different cloud data
centers to download different parts of replica in order to
reduce fair use-perceived latency under the cost constraint. The
idea of reducing latency using coded download via multiple
parallel data transmissions has been explored in previous
studies. Shah et al. [54] characterize the latency performance
of MDS queues and provide upper and lower bounds for
First-Come-First-Served (FCFS) scheduling policies. In [55],
Chen et al. propose a queueing architecture leveraging the cod-
ing redundancy inherent in cloud storage systems and prove
that a simple greedy policy is delay-optimal among all on-line
scheduling schemes. Sun et al. [56] propose low-complexity
thread scheduling policies for several important classes of data
downloading time distribution and show significant improve-
ments in delay performance compared to FCFS. These studies
focus on coded download which downloads the same size data
chunks from different storage nodes. Our scenario allows users
to download any number of file chunks from different clouds
under the cost constraint in cloud CDNs. Some researchers
have started to study delay-optimal load balancing scheme
[57], optimizing data freshness and throughput [58]–[60], as
well as network control without Channel State Information
(CSI) [61], [62]. Some application providers such as Facebook
use in-memory caching of data to reduce tail latencies [22].
However, caching at a single data center cannot tackle latency
variance on Internet paths, and not all application providers
will be able to afford caches at multiple data centers that

can accommodate enough data to reduce 100th-percentile GET
latencies.

Cloud Measurement Studies: Previous studies have com-
pared the performance offered by different cloud providers
[63], [64] and studied application deployments on the cloud
[65]. Moreover, Bodik et al. [66] focused on characterizing and
modeling spikes in application workloads. All these previous
work complement our work. Furthermore, our measurement
in this paper demonstrates that the tail latency problem inside
traditional cloud data centers also exists in cloud CDNs, and
we further highlight that the high tail latency is caused by
inevitable reasons within cloud data centers and over the
Internet.

Task Scheduling in Cloud Computing: The performance of
cloud services (e.g. cloud CDN) heavily depends upon the
scheduling of tasks. Existing works have studied the problem
of optimizing the execution time of all tasks (i.e. makespan)
in cloud services [67], [68]. However, existing works focus on
general scheduling methods on cloud computing environments,
and do not take the cost constraint into consideration. Instead,
TAILCUTTER focuses on the user-perceived latency of each
user instead of the overall execution time of all users, and
optimizes the tail latency under the cost constraint.

VIII. CONCLUSION

In this paper, we identify, formulate and address the high
user-perceived latency problem in cloud CDNs. Specifically,
we measure and analyze the latency performance of cloud
storage services, finding that the high tail latency problem
indeed exists in cloud CDNs. We then formulate the problem
of how to minimize the fair tail latency in the network
condition where high latency variance is inevitable. To address
the high tail latency problem we propose and implement
TAILCUTTER, a request scheduling mechanism that issues
parellel requests to different cloud data centers to reduce tail
latency. We implement TAILCUTTER in modern cloud data
centers and extensive evaluations using real world data traces
show that TAILCUTTER is able to cut up to 58.9% tail latency
in cloud CDNs.
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