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HyCloud: Tweaking Hybrid Cloud Storage Services
for Cost-Efficient Filesystem Hosting
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Abstract— Today’s cloud storage infrastructures typically pro-
vide two distinct types of services for hosting files: object storage
like Amazon S3 and filesystem storage like Amazon EFS. In
practice, a cloud storage user often desires the advantages of
both—efficient filesystem operations with a low unit storage price.
An intuitive approach to achieving this goal is to combine the
two types of services, e.g., by hosting large files in S3 and small
files together with directory structures in EFS. Unfortunately,
our benchmark experiments indicate that the clients’ download
performance for large files becomes a severe system bottleneck.
In this article, we attempt to address the bottleneck with little
overhead by carefully tweaking the usages of S3 and EFS. Guided
by two key observations, we design and implement an open-
source system called HyCloud. It automatically invokes the data
APIs of S3 and EFS on behalf of users, and intelligently schedules
the data transfer among S3, EFS and the clients in a distributed
manner. Real-world evaluations demonstrate that the unit storage
price of HyCloud is close to that of S3, and the filesystem
operations are executed as quickly as in EFS in most times
(sometimes even more quickly than in EFS).

Index Terms— Hybrid cloud storage, filesystem hosting, cloud
computing, transfer efficiency.

I. INTRODUCTION

RECENT years have witnessed phenomenal successes of
cloud storage in hosting data with the economies of

scale. Specifically, today’s cloud storage infrastructures have
provided a spectrum of services exemplified by Amazon S3
(Simple Storage Service), EBS (Elastic Block Storage), EFS
(Elastic File System), Glacier (Archive Storage), and so forth.
As the most basic data-organization form and the most user-
friendly information carrier, files are typically hosted by two
types of cloud storage services with distinct design principles
at the moment: object storage (e.g., Amazon S3, OpenStack
Swift and Aliyun OSS [1]) and filesystem storage (e.g., Ama-
zon EFS, Azure File Storage and Aliyun NAS [2]).
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Object storage services have experienced the highest growth
amongst the spectrum of cloud storage services, due to their
simple, flat data interfaces (like PUT, GET and DELETE an
object/file) and the extremely low unit storage price (e.g.,
∼$0.02/GB/month in S3). As a result, they have been widely
used by various popular applications (e.g., Dropbox, Netflix,
and Airbnb). On the other hand, the simple, flat data interfaces
also become a weakness when the upper-layer applications
wish to support POSIX-like [3] file and directory operations
(e.g., MKDIR, RMDIR, MOVE, COPY and LIST). Conse-
quently, the concerned applications (e.g., Dropbox) have to
maintain a separate index cloud, which incurs considerably
additional costs and complexities.

More recently, filesystem storage services, an alternative
type of cloud storage services, were provided to natively
support complex, hierarchical filesystem operations, especially
those operations involving directory structures. Third parties
can thus directly build upper-layer applications to support
POSIX-like operations atop this type of services. Nevertheless,
such services are found to have a much higher unit storage
price than object storage services. For example, the unit
storage price of Amazon EFS (∼$0.3/GB/month) is over
10× higher than that of Amazon S3.

In practice, a cloud storage user is often concerned with
price and efficiency, and desires the advantages of both cloud
storage services, i.e., efficient filesystem operations with a low
unit storage price. An intuitive approach to achieving this
goal is to combine the two types of services. For example,
we can host large files in S3 to achieve low storage costs, and
meanwhile host small files and the metadata of all files (mainly
directory structures) in EFS to achieve efficient filesystem
operations. Additionally, by maintaining “link files” in EFS
that refer to the large files in S3, we can easily handle those
directory-related operations such as MOVE, LIST and COPY.

To examine the practical performance of the intuitive
approach, we made a real-world deployment using S3, EFS,
and EC2 (note that the EFS service should be accessed
through an EC2 VM instance to which the EFS filesystem is
mounted [4]). Our benchmark experiments show that storing
and accessing small files (of several KBs to several MBs)
substantially benefit from the stably high performance of EFS.
Unfortunately, the clients’ download performance for large
files (of course from S3) often becomes a severe system
bottleneck. For instance, a client with a 100-MBps Internet
access bandwidth can spend up to 16 minutes in downloading a
100-MB file (hence the download speed is merely 0.1 MBps).
In essence, the highly unstable performance of S3 stems from
its relatively simple implementation, which cannot effectively
tackle possible transfer congestions incurred by numerous
concurrent data requests [5], [6]; in contrast, the mature
load balance support of EFS can well cope with bursty data
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Fig. 1. Architectural overview of HyCloud, and a typical process of a client
downloading a large file from the hybrid cloud storage services (Step 1©- 6©).

requests [4]. Still worse, the download bottleneck would also
hold off relevant filesystem operations (e.g., COPY) and thus
essentially undermine the user experiences.

In this article, we attempt to address the bottleneck with
little overhead by carefully tweaking the usages of S3 and
EFS. This attempt is enabled by our two key observations.
First, since S3 and EFS have the same unit network-traffic
price for clients (∼$0.05/GB for outbound traffic and free for
inbound traffic) and the data transfer between S3 and EFS
within the same AWS (Amazon Web Serivces) region is not
only rapid but also free of charge, we can always employ
EFS as a relay for the clients’ quickly downloading large
files. Second, noticing that significant similarity exists between
the files hosted at the cloud and the users [7]–[9], in most
times we can convert large-size file downloads into small-
size file synchronizations (through delta encoding and data
compression).

Guided by the observations, we design and implement a
system called HyCloud. As demonstrated in Fig. 1, HyCloud
utilizes a centralized controller to receive all clients’ filesystem
operation requests, and notifies relay proxies to execute the
filesystem operations on behalf of a user through invoking the
data APIs of S3 and EFS (EC2 VM instances work as relay
proxies given that they are necessary for executing POSIX-
like filesystem operations on EFS). In order to accelerate the
client’s downloading large files, HyCloud leverages EFS and a
relay proxy to forward the file content from S3 to the clients.
Moreover, whenever a user requests to download a large file
(say f ) from the hybrid cloud storage services, the client
first checks whether there is already an old version of the
file (say f ′) locally stored. If yes, the client will interact
with an assigned relay proxy to calculate the differences
between f and f ′ (the so-called “delta encoding”); afterwards,
the relatively small-size differences are returned to the client
in their compressed form for generating f .

To boost efficiency of all file transfer operations, we devise
additional traffic-aware mechanisms including large-file incre-
mental upload and small-file bundle transfer. Still, when
deployed within a single AWS region, HyCloud could produce
suboptimal performance when serving geo-distributed clients.
To address this, we strategically deploy multiple HyCloud
instances in different AWS regions, and accordingly design
dedicated mechanisms such as erasure-coding storage and
multi-source file download to optimize the distributed data
transfer performance and the data storage overhead.

Furthermore, we devise an online dataflow scheduling
algorithm to moderately balance the timeliness of filesystem
operation executions and the bandwidth overhead of relay
proxies. Specifically, based on the link bandwidths between

the clients and relay proxies, the algorithm dynamically adjusts
the execution priorities assigned to the clients’ filesystem
operation requests. When the timeliness falls below a threshold
thus causing considerable degradation in user experience, more
relay proxies will be added to the system to deal with bursty
workloads. We also design additional control mechanisms to
eliminate redundant operation requests, guarantee the filesys-
tem consistency, and tackle controller failures.

With all the above efforts, HyCloud achieves cost-
efficient filesystem hosting atop S3 and EFS in a scal-
able manner. All the source code is publicly available
at https://github.com/iHyCloud/hycloud-demo. Comprehensive
real-world evaluations demonstrate the efficacy of our design.
Under typical workloads, the overall unit storage price is
quite close to that of S3 (with only a 0.43% increase). The
filesystem operations are executed as quickly as in EFS in
most times. For example, downloading a 100-MB file with
HyCloud takes at most 15 seconds, approximately 5× faster
than that of S3 (when the client-side access bandwidth is not
a bottleneck). When there is already an old-version file locally
stored, downloading a 100-MB file costs less than 8 seconds,
even exceeding the performance of EFS.

This article makes the following contributions:

• We propose a combinatory use of two major types of
cloud storage services (Amazon S3 and EFS) to provide
users efficient filesystem operations with a low price, and
observe opportunities to address the performance bottleneck
of large-file downloads in the intuitive approach (§II).

• Based on the observations, we carefully tweak the usages of
S3 and EFS with an advanced file transfer scheme consisting
of relay-based file download and adaptively-adjusted delta
encoding, and design dedicated multi-instance deployment
and transfer optimization for geo-distributed clients (§III-B).

• Additionally, we devise an online dataflow scheduling algo-
rithm to boost the timeliness of operation executions while
reducing system overhead, and design a bundle of control
mechanisms to maintain operational reliability (§III-C).

• We implement an open-source cost-efficient filesystem host-
ing system called HyCloud to embody the above enabling
solutions. Extensive real-world evaluations demonstrate its
efficiency, cost-effectiveness and scalability (§IV).

II. MOTIVATION

To fulfill cloud storage users’ desires for both low unit
storage price and high filesystem operation efficiency, this
section presents our first endeavor towards a hybrid archi-
tecture that makes a combinatory use of object storage and
filesystem storage services in an intuitive manner. We describe
the design and implementation of the intuitive approach on
top of Amazon S3 and EFS (§II-A), followed by real-world
measurements of filesystem hosting performance with various
benchmark experiments (§II-B).

A. The Intuitive Approach

As the representatives of two distinct types of cloud storage
services, Amazon S3 and EFS have highly heterogeneous
pricing models for hosting files, briefly quantified in Table I.
Most notably, despite the pricing disparities due to the usage
amount and region, the unit storage price of Amazon EFS
(∼$0.3/GB/month) is over 10 times higher than (on aver-
age ∼15 times as) that of Amazon S3 (∼$0.02/GB/month)
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TABLE I

PRICING MODELS OF AMAZON S3 AND EFS

Fig. 2. The hybrid system design using the intuitive approach (large files
stored in S3 are indexed by link files).

[10]–[12]. On the other hand, S3 and EFS have the same
unit network-traffic price for clients,1 and the data transfer
between them (in the same region) is free of charge [11], [12].
Also, we find that for a large file, the request price is almost
negligible compared to the storage and network transfer price.

The above three findings directly motivate us to the intuitive
approach that hosts large files in S3 to achieve an overall
low unit storage price. In contrast, small files as well as
directory structures are hosted in EFS to take advantage of
the efficiency of EFS, given that small files have little impact
on the overall unit storage price and directory structures are
frequently accessed and updated. On this basis, we embody
the intuitive approach into a real-world system as depicted
in Fig. 2. In the cloud, a namespace path is allocated to each
user, in which a small file is directly stored in the path known
to the user’s client. For a large file stored in S3 (as an object),
a link file with the same file name plus a special extension is
maintained in the corresponding path of the EFS filesystem.
The link file includes a series of metadata, particularly a hash
index calculated based on the file content and used as the name
of the corresponding S3 object.

With such implementation, all those directory-related
filesystem operations (e.g., MKDIR, RMDIR, LIST, MOVE,
COPY and DELETE) can be easily handled with the EFS
filesystem. For example, we can directly read some metadata
of large files from their link files when listing files is requested.
Likewise, we just need to move or copy the corresponding link
file to another path for an operation to a file stored in S3. In
detail, a required filesystem operation is first encapsulated in
an HTTP POST/GET/PUT/DELETE request by the client, and
then sent to the controller working on an EC2 VM instance.
On receiving the HTTP request, the controller first extracts

1It is necessary for clients to access EFS through EC2 VM instances, and
thus the network-traffic price and request price in Table I are actually those
of EC2 (accessing EFS from EC2 is free of charge [11]).

the required filesystem operation, and then executes it in EFS
using the NFS (Network File System) protocol [4].

To save storage space for redundant large files, we make
multiple link files (linking to the same content) located in
different paths refer to a single object in S3. At the same
time, a global link number is marked in the object’s name to
easily count such link files (hence, the link number does not
need to be maintained in each link file). Accordingly, inspired
by copy-on-write adopted in Linux [13], we rename the object
by increasing the link number for a file copy and decreasing
the link number for a file deletion.

B. Measurements and Key Observations

Although the above described intuitive approach appears
to have offered a moderate balance between the working
efficiency and monetary cost for filesystem hosting, its real-
world performance has to be carefully examined to meet the
requirements of practical usages. Besides, we need a quan-
titative understanding on some key system parameters, e.g.,
the threshold between small and large files. Thus, we conduct
measurements on a real-world deployment concerning the
basic performance of S3 and EFS.

Specifically, by using S3, EFS and EC2 services all located
in the AWS Oregon region (where all the services have the
lowest price), we first measure the upload and download
latencies of S3 through S3 data API requests (PUT and GET),
and then measure the operation latencies of EFS through
various HTTP requests (LIST, COPY, MOVE, DELETE, etc.).
To comprehensively evaluate the performance, each kind of
requests are issued for files in 6 typical sizes exponentially
increasing from 1 KB to 100 MB, from three geo-distributed
DigitalOcean [14] VM nodes located at Singapore (SGP),
London (LON) and Toronto (TOR). Each of the DigitalOcean
clients possesses a 100-MBps Internet connection (so that
the client-side bandwidth would not become a bottleneck).
To grasp the stability of the performance, each experiment
is executed for 100 times over a whole week. We take the
measurement results over all three geolocations into account
when calculating the average or CDF of latencies.

Pros and Cons: As depicted in Fig. 3, all common directory-
related operations can be quickly executed in 0.44 seconds.
Except for the network-level round trip time between the
clients and EC2, a single directory operation’s execution
time is 0.1 seconds at most (on an EC2 VM instance to
which the EFS filesystem is mounted). Next, the average
upload/download latencies (in log-log scale) for files are
shown in Fig. 4. By comparing the upload latencies of S3 and
EFS, we find that EFS outperforms S3 for small files while
its performance falls behind S3 for relatively large files.
Quantitatively, the file-size threshold between small and large
files can be roughly taken as 1 MB or several MBs according
to the intersection point (marked in Fig. 4) of the “S3-Upload”
and “EFS-Upload” curves. These findings confirm the efficacy
of the intuitive approach in handling both directory operations
and file uploads.

On the other hand, Fig. 4 indicates that EFS substantially
outperforms S3 in terms of download latency for the files of
all sizes. For instance, a client needs an average of 10 seconds
to download a 100-MB file from EFS, but nearly 50 seconds
from S3. Still worse, we notice that the performance variance
(or says the instability) of S3 is much larger than that of EFS,
thus further aggravating the inferiority of S3 in handling file
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Fig. 3. Operation latencies of EFS on common directory-related operations
(including the round trip time).

Fig. 4. Average upload/download latencies for files in different sizes to/from
S3 and EFS.

Fig. 5. CDF of download latencies for 10-MB and 100-MB files from
S3 and EFS.

downloads. To quantify this, we plot in Fig. 5 the CDF of
download latencies for 10-MB and 100-MB files. Obviously,
S3 exhibits a much higher tail latency than EFS – a client can
spend up to 16 minutes in downloading a 100-MB file (hence
the download speed is as low as 0.1 MBps).

On the whole, while the attractive pricing makes S3 quite
suitable for large-file storage, the implementation defect (i.e.,
no mature load balance mechanism to tackle bursty data
requests) largely impairs its performance for large-file delivery.
If we adopt the intuitive approach for filesystem hosting,
the download performance of large files (of course from S3)
will become a severe system bottleneck. In addition, a long-
lasting download process may influence the execution effi-
ciency of other filesystem operations. For example, the COPY
operation (on a large file f ) would be held off while f is
being downloaded. This is because in the intuitive approach,
the COPY operation need increase the link number of f and
thus the name of f is changed accordingly. Hence, the system
has to wait until f is totally downloaded to start the COPY
operation.

Opportunities: During our experiments, we also notice
some opportunities to potentially address the system bottle-
neck unravelled above. First, we notice that the data transfer
between S3 and EFS is quite rapid. For instance, when we
transfer a 100-MB file between S3 and EFS in the same AWS
region (with the help of EC2) for 100 times, the average trans-
fer latencies in both directions are quite short: ∼4.5 seconds

Fig. 6. Average data transfer latencies for large files in different sizes between
S3 and EFS.

for S3→EFS and ∼2.5 seconds for EFS→S3 (as depicted
in Fig. 6). The download latencies from S3 and EFS together
with the S3→EFS transfer latency (denoted as tSC , tEC , and
tSE , respectively) comply with the phenomenon of Triangle
Inequality Violation (TIV) (i.e., tSE + tEC < tSC ), and thus a
relay mechanism is able to reduce its download latency [15]. It
is also worth mentioning that the data transfer between S3 and
EFS within the same AWS region is free of charge [11], [12].
Besides, EFS has the same unit network-traffic price with S3,
as listed in Table I. Given all above factors, we can always
employ EFS as a relay for the clients’ quickly downloading
large files.

In addition, we notice that significant similarity exists
between the files hosted at the cloud and the users. A compre-
hensive, real-world dataset of cloud storage usages [7] indi-
cates that the majority (84%) of files hosted by cloud storage
services are modified by users for at least once; moreover,
over half (52%) of files can be effectively compressed. Thus,
adopting data sync techniques such as delta encoding and data
compression is expected to reduce the WAN traffic (between
the cloud and its users) to a large extent, e.g., 76% saving
between adjacent versions of Emacs source codes [8], and 26%
saving among the network traffic from 11 enterprise sites [9].
Unfortunately, the data APIs of S3 do not support any of
these data sync techniques. As a result, whenever possible,
we can convert the full-content download of a large file into
the transmission of fine-grained sync data (in a relatively small
size) with some effective data sync techniques.

Geo-Distributed Cloud Instances: It is worth noting all the
above measurements are on the premise that only S3 and
EFS in the AWS Oregon region are deployed. Indeed, when
the users’ geolocations are relatively centralized (and the
number of users is not too large), deploying the hybrid clouds
in an AWS region with the lowest average access latency
can provide each user well acceptable file transfer perfor-
mance. However, the latencies of most cloud storage services
(especially object storage services like S3) show significant
spatial and temporal variances [6], [16], and thus the transfer
performance of a centralized cloud would not fulfill users
of all geographic regions in any period of time. As shown
in Fig. 7, when downloading a 10-MB file from S3 instances
in AWS Oregon (OR) and Ireland (IRL) regions, both median
and tail latencies of the Singapore client are much higher than
those of the Toronto and London clients (close to Oregon and
Ireland respectively).

An intuitively feasible solution is to deploy distributed cloud
instances serving their nearby clients in different regions.
However, as the performance of S3 is highly unstable, even
nearby clients may still encounter the high tail latency
problem when downloading large files. As illustrated by the
file download comparisons in Fig. 8 (three clients download
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Fig. 7. CDF of download latencies for a 10-MB file from S3 with clients
in different regions.

Fig. 8. CDF of download latencies for a 10-MB file from optimal and
multiple cloud instance(s).

the same file concurrently from the above two S3 instances
versus only from the optimal instance), leveraging multiple
cloud instances could be an effective approach to reduce
the user-perceived latency as well as latency variances. In
addition, reducing the data storage and transfer overhead
should also be considered, given that intuitive multi-replica
storage and inter-instance transfer are costly. Therefore, it is
necessary to deploy multiple cloud instances and well design
optimization mechanisms for distributed data transfer.

III. HYCLOUD DESIGN

Guided by the above two key observations, we design a
cost-efficient filesystem hosting service named HyCloud by
carefully tweaking the usages of S3 and EFS. In this section,
we first describe the system framework, followed by an
advanced file transfer scheme to boost the file transfer speed,
especially for the large-file download and geo-distributed data
storage. After that, we present a filesystem operation control
scheme which balances the timeliness of filesystem operation
executions and the system overhead.

A. System Framework

HyCloud fulfills all common filesystem operations based
on the interactions among Client, Controller and Relay Proxy,
as demonstrated in detail in Fig. 9. The functionality of each
building component is outlined as follows.

Client: HyCloud adopts a lightweight client-side imple-
mentation. On behalf of a registered user, Operation Handler
keeps sending filesystem operation requests to the controller.
In particular, for a file upload request Transfer Agent helps
upload the file content to either S3 or EFS according to the
file size. Besides, it is also responsible for downloading files
hosted in multiple HyCloud instances by interacting with the
relay proxies and managing the corresponding metadata.

Controller: As the command center of HyCloud, the con-
troller handles filesystem operation requests from geo-
distributed user clients. The work is mainly scheduled by the

Fig. 9. System framework of HyCloud (a centralized controller interacts with
HyCloud instances in different AWS regions and geo-distributed clients).

core Dataflow Scheduler, which adaptively adjusts the number
of in-used relay proxies in each instance according to the
scale of workloads and their available bandwidths. Filesystem
Manager accesses EFS of all instances to execute directory-
based filesystem operations. Moreover, Userinfo Storage is a
small database that stores infomation of all registered users.

Relay Proxy: HyCloud adopts an adaptive number of relay
proxies in multiple instances together with S3 and EFS. File
Interface on each relay proxy executes file transfer operations
by invoking data APIs, and meanwhile it handles data transfer
between S3 and EFS and maintains link files. Measurement
Agent periodically measures link bandwidths from connected
clients and feeds back the available bandwidth to the controller
for file workload dispatch. Transfer Engine is scheduled by
the controller to forward a file to the client. Data Optimizer
further conducts delta encoding and data compression on the
file when there is an old-version file stored on the client.

B. Advanced File Transfer Scheme

Aimed at the goal of cost-efficient filesystem hosting, we
have proposed an intuitive approach that hosts large files in S3
and small files together with directory structures in EFS. With
the elaborate design of hybrid storage and directory-based
maintenance, it proves to be cost-efficient for most filesystem
operations. Therefore, HyCloud inherits the basic storage
structure as well as all directory-related filesystem operations
(e.g., LIST, MOVE, COPY). On this basis, we design
an advanced file transfer scheme to address the large-file
download bottleneck of the intuitive approach, and further
boost efficiency of all file transfer operations. Besides, the
scheme also optimizes data transfer performance and storage
overhead for geo-distributed HyCloud instance deployment.

Relay-Based File Download: According to our first key
observation, in addition to storing small files, HyCloud also
adopts EFS as a relay to accelerate the download of large
files in S3. Specifically, when a user requests HyCloud
service to download a large file, the file is firstly transferred
from S3 to EFS by invoking their data APIs. Thereafter,
an assigned relay proxy (on an EC2 VM instance to which
EFS is mounted) forwards the file content to the client. Note
that such a file should not be stored in the corresponding
filesystem path in EFS (where its link file is) but temporarily
stored in a special caching path, to avoid influencing other
directory-related filesystem operations (e.g., LIST, MOVE,
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Fig. 10. An example of geo-distributed instance deployment (users are
divided into groups based on the clients’ optimal service instances).

COPY) to the path. To make relay proxies easily forward
them, they can be named by their original full paths in which
the separators are replaced with a special character (e.g., “#”).
Given the high performance of both transfer periods (shown
in §II-B) as well as data caching, this mechanism is supposed
to largely relieve the download bottleneck.

Adaptively-Adjusted Delta Encoding: In practice, for a
large proportion of files, there exists significant similarity
between the versions hosted at the cloud and its users (just
as our second key observation illustrates). To further improve
transfer efficiency, HyCloud conducts delta encoding for large-
file download when there is already an old-version file stored
locally. Concretely, to download a file f in S3, a checksum
list of the local old-version file f ′ is generated by the client
firstly. Once the file f is acquired from S3 or has been cached
in EFS, the assigned relay proxy calculates the differences
(i.e., a delta file) between two file versions based on the
uploaded checksum list. According to a large number of
tests, we observe that most delta files have an over 10 times
compression ratio (= file size before compression / file size
after compression) and the computation is also quite rapid.
Thus an effective compression program (e.g., gzip, bzip2)
can be further adopted to reduce the overall download time.
After the compressed delta file is returned to the client, it is
decompressed and finally applied on the old-version file f ′ to
generate the requested file f .

It is worth noting that the delta size Δ is determined by
both file attributes (size, type, and modification scale) and the
rolling chunk size. As a result, it seems impossible to obtain
an optimal chunk size for a file unless the file has already been
transferred. Instead, given our observation that the optimal
chunk size is highly consistent among versions of a file, here
we design an adaptively-adjusted delta encoding mechanism
to adjust the chunk size based on historical ones. Specifically,
we pick a small collection of typical chunk sizes �c in advance,
from hundreds of bytes to tens of kilobytes. For a file of
size Sf , we define elimination ratio γ = 1 − Δ/Sf . Every
time a client finishes downloading a large file, it conducts
delta encoding on the file locally with each chunk size ci to
get elimination ratio γi. Note that the process can be done
in background when there is enough CPU resource. Next
the local chunk-size selection probability vector are defined
as the normalized elimination ratios �Ploc = {γi/

∑
i γi}.

The correlation between newly predicted selection probability
vector �Pnew and previously recorded vector �Ppre is

�Pnew = �Ppre ∗ λ + �Ploc ∗ (1 − λ), (1)

where λ is a decay factor to gradually reduce the influ-
ence of previous probabilities, and it is typically set as
n/(n+1) for the n-th adjustment. The chunk size correspond-
ing to the highest probability in �Pnew (recorded as the new
file’s metadata) will be adopted next time.

Additional File Transfer Optimization: In addition to
addressing the large-file download bottleneck, we also try
to optimize other file transfer operations. According to the
performance measurements in §II-B, the S3 upload is efficient
enough for typical large files (e.g., uploading a 100-MB file
only takes ∼10 seconds on average). Thus a HyCloud client
generally uploads a large file to S3 directly. However, there are
still a number of clients that experience client-side bandwidth
bottlenecks. In this case, the upload of large files may also
benefit from delta encoding.

A typical process of delta-encoding upload is that the client
generates a delta file every time a large file is modified and
uploads it to EFS as a small file, and then the delta file is
applied to the old-version file acquired from S3 to generate
a new file. The corresponding link file is renewed thereafter,
in which the checksum list is replaced with the latest one. This
process is only conducted when its overall time (including the
time of delta computation and data upload, as well as the
time for data transfer between S3 and EFS in both directions)
is less than that of the direct upload approach. Accordingly,
when uploading a large file with an old version at the cloud,
HyCloud compares data upload rate ru with delta computation
rate rc, which can be inferred from the client’s real-time
outbound network bandwidth and its computation capacity,
respectively. The correlation between the above two rates ru

and rc should fulfill

ru < rcrtγmax/(2rc + rt), (2)

where the average data transfer rate between S3 and EFS rt is
acquired by periodical measurements (refer to Fig. 6), and the
currently maximum elimination ratio γmax is calculated based
on the above adaptively-adjusted delta encoding mechanism.

Besides, for small files stored in EFS, we supplement a
bundling mechanism to further boost their transfer efficiency.
Instead of one HTTP connection per file upload/download,
a persistent network connection is set up between HyCloud
client and a special relay proxy for uploading or downloading
all available small files to/from EFS. On this basis, asynchro-
nous application-layer file transfer status acknowledgments
are adopted instead of stop-and-wait ACK mode given that
these files are not related to each other. A failed file transfer
is tackled by putting the request into Request Queue for
retransmission (shown in Fig. 11).

Geo-Distributed Instance Deployment and Optimization:
Given the analysis in §II-B, we can deploy multiple HyCloud
instances in different AWS regions to preserve sound per-
formance when serving geo-distributed clients. Initially, each
registered user’s client uploads and downloads an enough-
large test file (a typical size is 10 MB) to/from all HyCloud
instances, and latency values are fed back to the controller in
groups. The instances with access latency less than +10%
the lowest value for a client are selected as its service
instances [17], among which the one with lowest access
latency is denoted as the optimal service instance. As illus-
trated in Fig. 10, while instances A and B are two user
groups’ optimal service instances separately, instances C and
D are also service instances for both user groups. All clients’
current service instances and the corresponding latencies are
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maintained in UserInfo Storage database of the controller (as
shown in Fig. 9), which will be updated periodically and
inquired every time a file transfer request arrives.

On the basis of the above instance deployment mecha-
nism as well as the aforementioned file transfer optimiza-
tion, we next further consider effective storage and transfer
optimization for the distributed service instances. On the one
hand, HyCloud can still host a user’s filesystem (including
the directory structures, small files, and links files of large
files) in EFS, which is deployed in the client’s optimal
service instance (e.g., instance A serves for user group A and
instance B serves for user group B in Fig. 10). The design is
based on the observations in §II-B that small-file transfer as
well as directory-related operations generally has stably high
performance over time. On the other hand, large files should
be stored in S3 of multiple service instances (e.g., instances C
and D also store files of user groups A and B) to further tackle
the temporal large-file performance bottleneck, especially for
the clients without service instances nearby.

Accordingly, erasure coding is wisely applied to distribute
large files to multiple service instances, which provides high
data availability and reliability while introducing low storage
overhead in contrast with storage replication. Before a file
is uploaded, the client segments it into fixed chunks, where
the chunk size is set to be the file-size threshold S̄f . Then
for each chunk, n blocks are generated with Reed-Solomon
erasure coding [18], among which there are k data blocks and
n − k parity blocks (denoted as RS(n, k)). By this means,
any k blocks can restore the original chunk (i.e., download
failures of up to n− k blocks are tolerated). As each block is
then uploaded to a distinct service instance, the block number
n should be no more than the number of the client’s service
instances N (fed back by the controller); to support erasure
coding, n should also be no less than 3, i.e., 3 ≤ n ≤ N . Note
that when N < 3, the erasure coding is not applicable and
HyCloud adopts the replication mechanism instead.2 Further,
the data block number k should fulfill the constraint 2 ≤ k <
n. While the upload and download mechanisms below are
applicable to all possible (n, k) values, it is better to set them
as the minimum values to reduce data transfer and computation
overhead.

To balance the loads of HyCloud instances, a hash ring
is built to maintain all N service instances of a client, and
each time n of them are selected for file upload based on the
consistent hashing algorithm [19]. Note that when a service
instance is lack of available bandwidth, the process can be
asynchronously executed before the file download starts. Once
the file upload is completed, all blocks’ hash values and
locations are recorded in the corresponding link file together
with other metadata. Given the n service instances with blocks
of a file, we next dispatch their download workloads with
a multi-source file download algorithm to minimize the file
download time. Suppose the file is segmented into m chunks,
and the block size of chunk i (i = 1, 2, · · · , m) is bi.
Moreover, dri indicates if a block of chunk i is downloaded
from service instance r (r = 1, 2, · · · , N ), and sri indicates
if the block is stored in service instance r (1 = yes and
0 = no for both indicators). For each chunk, k of n blocks are

2In this case, the client uploads/downloads the whole file to/from the service
instance(s) based on the aforementioned mechanisms; and when there are two
instances, their download workloads are allocated proportionally according to
the client-instance link bandwidths.

required to be downloaded, and thus dri fulfills the constraint
∑

r

dri = k, dri ≤ sri ∈ {0, 1}, ∀i. (3)

It is also worth mentioning that the relay-based file down-
load mechanism is still adopted here. For a given service
instance r, both the S3→EFS transfer bandwidth BW t

r and the
EFS→client download bandwidth BW d

r should be estimated
in advance. To boost real-time optimal workload allocation,
here we induce an online bandwidth estimation mechanism.
Based on the observation that the network conditions are usu-
ally stable on short timescales [20], it is possible to obtain rea-
sonably accurate bandwidth prediction for a short horizon to
the future. Therefore, we collect historical relay-based down-
load latencies for each service instance, and calculate both
bandwidth sets {BW t

r} and {BW d
r} of the latest K files (up

to 5 in the same period). The harmonic means of these band-
widths can be regarded as the two real-time bandwidths [21],

˜BW x
r = K/(

K∑

i=1

1/BWx
ri), ∀r (x = t, d). (4)

When there is no file download for a service instance during
a period, the bandwidths are estimated by the last periodical
test-file measurements instead.

In addition, the adaptively-adjusted delta encoding mecha-
nism is still applicable, i.e., only relevant blocks are transferred
based on the mechanism when a file is updated. Thus, we also
define the delta computation rate Cr and the elimination
ratio γ, which are forecasted by file history traits provided
by the client (γ = 0 if no delta encoding is conducted).
Then the workload download time of service instance r is
calculated by

tr =
∑

i

bidri ∗ [1/ ˜BW t
r + (1 − γ)/ ˜BW d

r + 1/Cr]. (5)

Given that the file download time is the maximum workload
download time from n service instances, our objective can
be expressed as arg mindri

{max{tr}}. For such a 0-1 pro-
gramming problem, we adopt a near-optimal solution with low
running time. Firstly, we compute a convex approximation that
does not consider the integer constraint on dri (replacing dri

with the closest linear estimator d̂ri = (31/4dri + 3−1/4)/2).
Then we can solve the converted linear integer optimization
problem for the optimal {dri} and {tr} with the standard
branch-and-bound algorithm [22].

C. Filesystem Operation Control Scheme

In practice, a filesystem operation is expected to be com-
pleted as soon as it is requested by a user. However, massive
workloads induced by a large scale of filesystem operation
requests (especially those which cannot be well optimized
with the above transfer scheme) may bring heavy overhead
to HyCloud proxies. Therefore, we next design a filesys-
tem operation control scheme including an online dataflow
scheduling algorithm and additional control mechanisms in
both controller and client sides, to guarantee well acceptable
timeliness of filesystem operation executions while reducing
the system overhead as much as possible. Fig. 11 depicts the
whole filesystem operation control process of HyCloud.

Dataflow Scheduling Algorithm: We first design an online
scheduling algorithm including priority assignment and work-
load dispatch for filesystem operation requests before their

Authorized licensed use limited to: Tsinghua University. Downloaded on December 17,2020 at 12:30:04 UTC from IEEE Xplore.  Restrictions apply. 



2636 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 6, DECEMBER 2020

Fig. 11. The complete filesystem operation control process of HyCloud
(operation requests from different clients are scheduled in the controller).

real executions. Each operation request includes file metadata
like file size (0 for a directory), operation type and arrival
timestamp. They are added to a priority-based message queue
named Request Queue when arriving at the controller. We next
optimize the overall performance of filesystem operations by
adjusting the orders in which the requests are handled.

In general, users are less sensitive to the timeliness of large
file transfer than that of small file transfer and other directory-
related operations. Therefore, we take both arrival time of a
request and the file size (together with the operation type) into
account. While the execution of a large-file operation may
be postponed to when some small-file operations have been
handled, starvation of large-file operations could be prevented
given their enough early arrival time. Accordingly, we define
Filesystem Operation Priority (FOP) as the following virtual
completion time metric (the operation request with the smallest
FOP value will be handled first).

FOP (x) = txA + txT , ∀ operation x, (6)

where tA corresponds to the arrival timestamp attached in
the operation request. Besides, tT represents the file transfer
time, which can be calculated with the estimated real-time
bandwidths and other factors (e.g., elimination ratio, delta
computation rate) according to the mechanisms in §III-B.
Note that the directory-related operations do not involve data
transfer, so they can be simply and quickly finished by the
controller. Correspondingly, HyCloud sets a fixed small tT
value for them, and thus these low-cost operations are most
likely to be handled before file transfer operations. Among
these operations, an FCFS (First Come First Served) priority
assignment is adopted then.

In particular, common operations to the same file or relevant
files/directories (e.g., download and then delete a file, make a
directory and then upload a file into it) are executed based on
their request sequence to avoid potential logic errors or filesys-
tem inconsistencies. An operation is executed only when
the acknowledgment of its previous one is received by the
controller (i.e., the stop-and-wait ACK mode is adopted to
these files and directories). Similarly, the controller can easily
support more user-specified orderings (especially those crafted
to conserve crash consistency [23]) by adding them as special
cases of the priority assignment.

Based on the above execution priority assignment, relevant
clients then adopt multiple threads for uploading large files
to S3, and handles small files by one thread that successively
transfers them to a special relay proxy. On the other hand,
the controller schedules a relay proxy to tackle file download
by sending notifications to its Notification Queue. Then the
relay proxy adopts multiple handling threads to download the

files, making the best of its available bandwidth. In both cases,
the filesystem consistency can be guaranteed because multiple
threads simultaneously accessing one file will be naturally
prevented by the priority assignment of the above scheduling
algorithm. It is worth noting that in the distributed cloud
storage scenario, only relay proxies deployed in a client’s
service instance(s) are scheduled by the controller.

Adaptive Relay-Proxy Adoption: To balance the timeliness
of bursty workloads and system overhead, we further design
an adaptive relay-proxy adoption mechanism. A background
thread monitors the real-time available bandwidth BW a in
each proxy and periodically fed back to the controller, to avoid
congestion caused by too many concurrent file workloads.
Relay proxies will be added for load balance when bandwidth
shortage occurs in the working proxies. Specifically, whenever
BW a ≤ BW o ∗ θc (where BW o represents the initially
measured overall bandwidth of the proxy and θc is a conges-
tion threshold), another proxy is added to balance the load.
Suppose that there are currently n relay proxies (R = {ri},
i = 1, 2, · · · , n), BW i

o represents the initially measured over-
all bandwidth of each proxy and θc is a congestion threshold.
To fully utilize the available bandwidth of the existing proxies,
only when

BW i
a ≤ BW i

o ∗ θc, ∀ri ∈ R, (7)

the proxy number increases to n + 1. In addition, we also set
a leisure threshold θl to save proxy resource. Here only when

BW i
a ≥ BW i

o ∗ θl, ∀ri ∈ R, (8)

the proxy with lowest BWo will be recycled after finishing the
current file transfer (but not considered for workload dispatch
of new files), and then the number of proxies decreases to
n − 1. We adopt such a lazy decrease mechanism since it
can reduce the possibility of proxy number fluctuation. On
this basis, the workload dispatch can be quite simple. The
relay proxy with the highest BWa among all in-use proxies
is selected for the next file transfer workload. Note that the
above proxy selection process is conducted by the controller
based on relay proxies’ available bandwidths piggybacked in
file transfer status application-layer acknowledgments.

Local Redundant Request Elimination: To further boost
the execution efficiency of filesystem operations, additional
control mechanisms are adopted in the HyCloud client. Firstly,
it is manifest that too many frequent operation requests from
a large number of users can severely influence the controller’s
performance. Therefore, whenever the controller feeds back
its performance reduction or a client itself encounters network
bandwidth bottleneck, we cache filesystem operation requests
in Local Operation Queue, and then send them to the controller
as soon as there is no bottleneck. Moreover, during the
caching interval, some redundant requests can be eliminated
locally. For instance, a file upload request is removed once a
deletion or another upload operation to the same file appears
subsequently. Through the above mechanisms, we can guaran-
tee the system scalability as well as reduce the real filesystem
operation workloads to a large extent.

Filesystem Consistency Maintenance: We need maintain
filesystem consistency between a HyCloud instance and its
clients in case of system failures. While a user’s namespace
path is hosted in EFS of the client’s optimal service instance,3

3The client accesses the EFS filesystem through a special relay proxy
deployed in the optimal service instance.
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the client maintains the metadata of all files and directories
in the path locally. In addition, a user may migrate to another
geographic region (identified by the client’s IP address [24])
and thus the optimal service instance changes. Migrating small
files and directories from the original service instance to the
new optimal one in the idle time can help reduce the user’s
access latency thereafter. For example, in Fig. 10 a user
originally in user group A migrates to user group B, and
thus filesystem migration is conducted between instances A
and B. To support breakpoint-continued filesystem migration
among instances, we should also maintain filesystem consis-
tency between any two instances. To check the filesystem
consistency in either case, we organize hash values of a
user’s all files and directories with a Merkle tree [25] and
hierarchically exchange the hash values between the two sides.

Specifically, we generate an MD5 hash value for each
file based on its file content and full path. On this basis,
a directory’s hash value is calculated by concatenating all
the hash values of non-cascaded files and subdirectories. For
instance, there are n files {fi}(i = 1, 2, · · · , n) and m
subdirectories {dj}(j = 1, 2, · · · , m) in the directory d, and
the hash values for each file and subdirectory are Hash(fi)
and Hash(dj), respectively. Then the directory d’s hash value
can be recursively calculated by

H(d) = H(H(d0) +
∑

i

H(fi)) +
∑

j

H(dj)), (9)

where “+” means concatenation and H(d0) is generated by
the directory d’s full path name (H(d) = H(d0), if d is
an empty directory). When erasure coding is conducted to
generate multiple blocks {bk}(k = 1, 2, · · · , p) for a large
file f , all the blocks’ hash values instead of the file’s hash
value serve as leaves of the Merkle tree. In this case, each
block’s hash value H(bk) is concatenated to the large file’s
MD5 hash value H(f0) by sequence, i.e., the file’s hash value
is specially calculated by

H(f) = H(H(f0) +
∑

k

H(bk)). (10)

We denote either a client and an instance or two counterpart
instances as A and B (e.g., instances A and B in Fig. 10),
and the hash value exchange process between them could
be: A sends the root hash value to B, which compares the
received value with that of its own Merkle tree. If the two
values match, the two filesystems are consistent and thus the
process terminates. Otherwise, B in turn sends the hash values
of subdirectories to A for further checking. The similar steps
are repeated until reaching the leaves of the Merkle trees. By
this means, we can check out the inconsistent files within h
steps, where h is the maximum height of the two Merkle trees
and it is generally small for most users. For any inconsistent
counterpart elements (directories, files or blocks), we further
compares the respective last-modified time attributes, and
then replace the old-version elements with the new-version
ones or create/delete elements accordingly (facilitated by file
deletion marking). Note that the above process is conducted
in the idle time or when a system failure occurs, which would
not affect the performance of filesystem operations.

Controller Selection and Maintenance: HyCloud utilizes a
centralized controller to simplify the consistency maintenance,
and we demonstrate by evaluation (refer to §IV-D) that a
single controller is sufficient to tackle a large quantity of
filesystem operation requests arriving in a short time. As

the controller need execute filesystem operations on behalf
of the users, it is expected to access the EFS filesystem of
each HyCloud instance with low latency. Accordingly, we
measure the variation of round trip time between each pair of
HyCloud instances in n different AWS regions over a whole
week and calculate the average results, denoted as {RT ij}
(i, j = 1, 2, · · · , n), and then select a region to deploy the
controller by calculating argmini{max{RT ij}}. To enhance
the reliability of HyCloud, we also prepare an alternative
controller and adopt it when failures occur to the in-used
controller. We can deploy it as a reserved instance in another
AWS region with the minimum round trip time among the rest
regions (the two controllers are deployed in different regions
to avoid simultaneous failures). The alternative controller also
utilizes a UserInfo Storage database to store information of
all clients.

When a controller failure (e.g., power loss or kernel panic)
occurs and thus the controller cannot be connected, the above
filesystem consistency maintenance mechanism is adopted
between each client and its optimal service instance’s EFS,
examining the inconsistencies by hierarchically exchanging
hash values and then updating the old-version files and direc-
tories. By this means, there is no need to periodically conduct
request backups to the alternative controller, and HyCloud is
tolerant of the request loss caused by the controller failure.
Afterwards, the clients’ new operation requests are sent to the
alternative controller and still handled by the aforementioned
dataflow scheduling algorithm. When the suspended original
controller can be reused, it notifies the in-used alternative
controller, which then forwards the message to clients by
attaching it to the responses. To avoid filesystem operation
conflicts induced by simultaneous usage of both controllers,
once receiving the message, a client caches the user’s new
operation requests in its Local Operation Queue until the
previous requests are all acknowledged. Then the client starts
sending operation requests to the original controller, and the
cached requests are sent in a batch. The alternative controller
is suspended after it finishes handling the existing requests.

IV. PERFORMANCE EVALUATION

In this section, we first briefly present the implementation
of HyCloud prototype. On the basis of real-world deployment,
we conduct measurements on the effectiveness of the designed
file transfer scheme in different scenarios with a variety of
typical workloads. Finally, we evaluate HyCloud’s storage
cost-effectiveness as well as scalability (by adopting the above
control scheme) with a large-scale data trace.

A. HyCloud Prototype

We have implemented a prototype of HyCloud framework
in approximately 5000 lines of codes for all three platforms
(client, controller and relay proxy). The prototype can provide
a cost-efficient filesystem hosting service atop S3 and EFS in
a scalable and distributed manner. The source code is available
at https://github.com/iHyCloud/hycloud-demo.

Particularly, we implement rsync [26]-like delta encoding
without invoking rsync libraries, thus conveniently adding
transfer optimization mechanisms while avoiding extra over-
head. Meanwhile, a moderate amount (typically 1 GB) of EFS
storage capacity is used to cache the forwarded files, which
are recycled periodically in the idle time following LRU (Least
Recently Used) caching scheme. We implement erasure coding
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Fig. 12. Download time reduction with the relay-based mechanism for large
files in different sizes.

with the zfec library [27] based on the RS(3, 2) configuration.
The controller and relay proxies interact with S3 and EFS by
invoking their data APIs. When a number of operation requests
arrive simultaneously, HyCloud will start multiple threads to
accelerate API upload or download correspondingly under the
designed transfer scheme. In addition, bandwidth feedback as
well as workload dispatch relies on the interaction between
the controller and a relay proxy with Apache MINA [28].

B. Experimental Setup

We deploy HyCloud instances in geo-distributed AWS
regions with S3 and EFS. Relay proxies on Amazon EC2
t2.micro instances with 1 vCPU @2.5 GHz and 1 GB of
memory (the configuration is low and cheap) are adaptively
adopted in each region, where EFS is able to be directly
mounted and S3 can be also efficiently accessed. According
to our designed selection criterion, EC2 t2.micro instances
in the AWS Oregon and Virginia regions serve as the in-
used and alternative controllers respectively. We evaluate the
file transfer mechanisms not involving geo-distribution based
on the Oregon instance, which is overall the best among all
instances on the aspects of both performance and cost.

According to the requirement of experiments, we adopt
DigitalOcean VM nodes with the lowest configuration but
unlimited network bandwidth in Singapore (SGP), London
(LON) and Toronto (TOR) as HyCloud clients (the same as
in §II-B), which can well simulate user PC performance and
avoid local network congestion. Here the average bandwidth
between a client and a relay proxy is ∼50 Mbps according to
the real-world measurement. As the comprehensive cost and
performance efficacy of the intuitive approach is proven to be
better than only storing files in S3 or EFS in §II-B, we next
take it as a baseline for most performance comparisons.

In addition, to calculate a convincing overall unit storage
price and evaluate the scalability of HyCloud, we utilize a
large-scale data trace of a former cloud service Xuanfeng. This
trace was collected from 742,064 users with 3,412,827 files
over a week, involving all kinds of filesystem operations. The
major fields in each record include file metadata like hash
value, file size, operation type, request and execution time,
and the corresponding user client’s IP address. Specifically,
we select the records on Feburary 22, 2015 for storage cost
comparison (with S3 and EFS), which has totally 514,095 files
ranging from 5 KB to approximately 4 GB. We further
select records in the period [0:00, 0:10] of that day for the
scheduling scalability evaluation. This 10-minute subset has
totally 2002 files, which corresponds to a download burst.

C. Effectiveness of Advanced File Transfer Scheme

Relay-based file download is a basic mechanism that
HyCloud adopts to tackle the large-file download bottleneck.

Fig. 13. Download time reduction for different versions of four common
source codes.

We first evaluate it on a number of typical large files (the size
ranges from 10 MB to 100 MB). Note that the download data
were not cached locally and do not contain any duplicated
chunks here. The overall download time of each size is shown
in Fig. 12 (their average S3-to-EFS transfer latencies are all
shown in Fig. 6). We also show the performance of the intuitive
approach (directly downloading the large files from S3) for
contrast. As the figure illustrates, downloading files in all sizes
experience performance promotion, with time reduction up
to 83.9% and 64.5% on average. Especially, downloading a
100-MB file only takes at most 15 seconds with HyCloud,
which indicates the effectiveness of the relay-based file down-
load mechanism.

In addition, HyCloud adopts adaptively-adjusted delta
encoding in the relay-based download process for files with old
versions locally stored. Accordingly, we conduct evaluation on
download time of source codes, which are updated frequently
in general. Specifically, four common source code tar files in
different sizes are adopted (Redis ∼7 MB, Tomcat ∼25 MB,
FFmpeg ∼58 MB, Hadoop ∼100 MB). We download 10 latest
versions of codes sequentially based the adaptively-adjusted
delta encoding mechanism in HyCloud. Fig. 13 describes the
transfer time of each multi-version code file, in which the
intuitive approach (downloading the source codes from S3)
also serves as a comparison. HyCloud can bring quite large
efficiency promotion, reducing the download time up to 81.9%
(67.3% on average). It is also worth mentioning that the aver-
age download time of 100-MB Hadoop code files is less than
8 seconds, even exceeding the performance of EFS (∼10 sec-
onds for the 100-MB file download as shown in Fig. 4).

We then evaluate the effectiveness of adaptively-adjusted
delta encoding mechanism by measuring the network traffic
incurred among the above 10 different versions of FFmpeg
code files. Note that the overall data transfer latency is
positively related to network traffic, as computation time of
delta sync varies little with different chunk sizes. The metric
transfer traffic ratio is defined as the ratio of the transfer traffic
with a chunk size to the theoretically optimal one. Fig. 14
shows the ratio of HyCloud in contrast with that of several
typical chunk sizes. We observe that the transfer traffic of
HyCloud converges to the optimal curve much faster than all
fixed chunk sizes, and its steadiness among different versions
also shows robustness of the mechanism. As the computation
is mainly conducted in the idle time, the mechanism brings
little overhead in practice.

The transfer optimization of large-file upload is also eval-
uated with three source code files used above, i.e., Redis,
Tomcat, and FFmpeg. Here the intuitive approach (uploading
the full file to S3) and the basic delta encoding (immediately
applying delta to the old version file) serve as two com-
parisons. Fig. 15 shows their transfer time of 10 uploaded
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Fig. 14. Performance of adaptively-adjusted delta encoding mechanism
(using one FFmpeg version at a time).

Fig. 15. Upload time reduction among versions of three common
source codes.

Fig. 16. Overall upload and download time of different batches of
small files.

Fig. 17. Download time reduction with the multi-source download optimiza-
tion algorithm.

versions. As shown in the figure, the transmission optimization
mechanism of HyCloud has a significant improvement in the
upload time of files. Compared with the best of the two
comparisons, there is an average time reduction of 25.7%.

Besides large files, sometimes a user may intend to
upload or download a folder with a number of small files. We
next evaluate our small-file bundling mechanism by uploading
and downloading typical batches of small files (10 ∗ 10 KB,
10 ∗ 100 KB, and 100 ∗ 10 KB). Likewise, the intuitive
approach (uploading or downloading small files to/from EFS
successively) is used as a contrast. As shown in Fig. 16, despite
performance disparities among different transfer scenarios,
HyCloud always outperforms the contrastive scheme, with
transfer time reduced 86.3% on average. The comparison
confirms the effectiveness of the bundling mechanism in our
transfer scheme.

Fig. 18. Impact of file size threshold on the overall upload and download
time of a number of files.

We further evaluate the multi-source file download algo-
rithm designed for geo-distributed service instances. For the
three testing clients mentioned in §IV-B, HyCloud instances
in three AWS regions are selected as their service instances
according to the deployment mechanism in §III-B. We mea-
sure the download time of a 100-MB file for each client (the
generated blocks have been stored in the service instances
in advance). Fig. 17 illustrates the performance of HyCloud in
comparison with that of the baseline approach (downloading
the whole file from the optimal service instance). The down-
load time reduction is observed on all the three clients, among
which the SGP client with high download latencies from all
service instances experiences the most obvious reduction (up
to 77.9% and 40.7% on average). The reduction mainly comes
from HyCloud’s higher overall transfer rate than that of the
baseline given that only approximately twice the file workload
(two of three blocks for each chunk) is downloaded from three
sources in parallel, and both indicator computation and block
decoding in the mechanism bring little extra time (less than
0.5 seconds in total). On the other hand, as the optimal service
instance has to be determined based on the instances’ link
bandwidths before file download, its performance may not
keep optimal throughout the download process, especially in
the case that a large file is downloaded from a remote client.

D. Overall Indicators of HyCloud Service

In addition to the above experiments on the main transfer
optimization mechanisms, we also evaluate two overall indica-
tors of HyCloud service – storage cost and scalability. Before
that, we first determine the file-size threshold S̄f for HyCloud
filesystem hosting by testing a small collection of typical file
sizes (512 KB∼8 MB) around the rough threshold (1 MB)
for the intuitive approach (in §II-B). Specifically, we generate
100 files in different sizes which are randomly selected from
the data trace (file sizes over 1 GB are filtered out), and
then evaluate their overall transfer performance by uploading
and downloading them to/from S3 or EFS according to each
threshold for 10 times. According to the results depicted
in Fig. 18, we can set the file-size threshold as 2 MB for
the HyCloud service due to its overall best performance.

On this basis, we evaluate the storage cost of HyCloud
through overall unit storage price comparison. For files in the
selected one-day data trace (described in §IV-B), the costs of
storing their file data and metadata in the three cloud services
are shown in Table II. According to the latest prices of S3 and
EFS, the overall unit storage price (including metadata storage)
of HyCloud is ∼$0.02279/GB/month for the selected typical
file workloads, which is much cheaper than that of EFS and
quite close to that of S3 (the increase is only 0.43% if metadata
is stored in EFS in all cases). The evaluation well shows the
cost-effectiveness of HyCloud as a filesystem hosting service.
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TABLE II

STORAGE COSTS OF CLOUD SERVICES UNDER TYPICAL WORKLOADS

Fig. 19. Performance of HyCloud scheduling in comparison with typical
scheduling algorithms.

Fig. 20. Proxy number variation with the adaptive relay-proxy adoption
mechanism.

On the other hand, we evaluate the scalability of HyCloud
scheduling algorithm by executing a large number of file
download operations selected from the data trace (described
in §IV-B). To guarantee timeliness of operation executions,
the average file transfer completion time is an important
metric. Thus we focus on the ratios of HyCloud’s average
completion time to that of two contrastive algorithms FIFO
and group-based fair sharing (G-Fair). Note that the G-Fair
algorithm schedules a group of files (up to 10) concurrently
to share the bandwidth resource, and the transfer bandwidth
is around 50 Mbps as mentioned in §IV-B. Fig. 19 depicts the
variation trends of two ratios as the number of file download
operations increases. The ratios of HyCloud to both algorithms
converge to around 50% soon and keep steady thereafter. The
obvious promotion indicates that HyCloud can well guarantee
the timeliness of a burst of file transfer requests.

According to the bandwidth measurement and data trace
analysis, we set the congestion threshold θc and leisure thresh-
old θl to be 20% and 60%, respectively. On this basis, we also
evaluate the effectiveness of the adaptive relay-proxy adoption
mechanism with the above data trace. Fig. 20 depicts how the
number of relay proxies varies in a HyCloud instance as the
file download operations are scheduled, which can well reflect
the system overhead (the available bandwidth at a proxy is
100 Mbps to the maximum). In contrast with adopting a single
relay proxy, the adaptive adoption mechanism can achieve
53.9% reduction in the total download time. More importantly,

Fig. 21. Variations of the controller’s resource utilization during the
monitoring period.

HyCloud keeps quite low number of relay proxies adopted for
workloads in the one-day data trace during the whole process
(less than 2 on average and up to 3 only for some short bursty
periods). Given the low price of EC2’s compute resources
($0.0116/hour for each deployed VM instance), these relay
proxies bring a marginal extra cost to the whole system –
merely 0.21% of the storage cost.

Finally, we monitor the in-used controller (with 1 vCPU
@2.5 GHz, 1 GB of memory and 500 Mbps of maximum
bandwidth) when executing filesystem operations of 4 peak
hours ([19:00, 23:00]) in the selected one-day data trace (refer
to §IV-B). Specifically, there are 73,754 filesystem operations
requested from 22,675 users, each of which is emulated by
a distinct process on a nearby DigitalOcean or Aliyun ECS
VM node with the lowest configuration (through identifying
geolocation with the user client’s IP address), and the concur-
rent user number is around 3,000 (up to 3,144) during the mon-
itoring period. We measure variations of the controller’s CPU,
memory and network usages (sampling every 30 seconds). As
shown in Fig. 21, the CPU, memory and network utilization
ratios4 are quite low and steady (all below 6%) confronted with
intensive arrival of operation requests. Given the controller
involves no data transfer and wisely adopts a priority queue
for scheduling, deploying one controller is enough to handle
concurrent operation requests from a large scale of users.

V. DISCUSSION

In addition to the above system design and implementation,
we also discuss a few more relevant issues as follows.

System Generality and Productization: HyCloud achieves
cost-efficient filesystem hosting based on hybrid cloud storage
services, and we have implemented it atop Amazon S3 and
EFS. It is worth mentioning that the system framework can
also be applied to hybrid storage services of other popular
public clouds, such as Azure Blob Storage and File Storage,
Aliyun OSS and NAS. Especially, as the latency TIV phe-
nomenon (illustrated in §II-B) universally exists, HyCloud’s
relay-based file download mechanism is suitable to the large-
file download of these clouds. For instance, according to our
real-world measurements, downloading a 100-MB file from
Azure Blob Storage takes nearly 40 seconds on average; in
contrast, when Azure File Storage works as a relay, the overall
download latency (from Blob Storage to File Storage and then
to the client) is only approximately 8 seconds. In addition,
to be productized, HyCloud should be both cost-efficient and
easy to use, to attract a multitude of users that overwhelms
the overhead of storage cost and proxy maintenance.

4We combine the inbound and outbound traffic (21.9 and 9.5 KB/s on
average during the monitoring period) for the network utilization calculation.
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Security and Privacy Issues: Apart from the architecture,
security and privacy are also often concerned for a filesys-
tem hosting service, as data confidentiality of cloud storage
becomes increasingly significant [29]. Currently, public cloud
storage services such as AWS and Azure require users or third-
party services to register and obtain a unique token before
invoking various data APIs. In reality, a considerable number
of users would like to thoroughly prevent the third parties
like HyCloud or even cloud providers like Amazon from
accessing their confidential data. An intuitive approach is
that a user directly conducts asymmetric encryption with the
RSA algorithm locally before uploading a file. However, this
approach will largely increase the total upload time and impose
significant computation overhead on the client, especially for
large files. A seemingly feasible approach is to encrypt the
file content with a symmetric encryption key and then encrypt
the key with an asymmetric algorithm like RSA, which helps
avoid performance penalty of encryption while achieving the
same level of security. We will further explore more effective
mechanisms to balance the security and computation overhead
in the future work.

VI. RELATED WORK

There has been a quantity of work on the topic of cloud
storage service, which our work is mainly related to in the
following three aspects.

Cloud Measurement Studies: A dozen of research papers
measure and benchmark performance of both public
clouds [5], [30] and personal cloud services [7], [24]. Espe-
cially, some papers elaborately study the well-performed cloud
services (like Azure [31], Dropbox [32], UbuntuOne [33] and
OpenStack Swift [34]) by pinning their inside architectures,
and even localize performance anomalies in Infrastructure-as-
a-Service clouds [35]. In contrast with them, we are the first
to measure the performance of the newly-launched Amazon
EFS on all common filesystem operations. More importantly,
we further observe that EFS can work as a relay to accelerate
the large-file downloads from S3.

Multiple Cloud Storage: Some previous work has applied
multiple public or personal cloud services for client-central
redundant data backup (e.g., DepSky [36], MetaSync [37],
CYRUS [38], UniDrive [39]), as well as enabled efficient
cross-cloud file collaboration (e.g., CoCloud [17]). Besides,
some other studies leverage different cloud CDNs to reduce
transfer latency [6], [40], [41] or provide cost-effective data
placement [42], [43]. Unlike those studies binding multiple
object storage services for distributed storage, HyCloud pro-
vides a cost-efficient filesystem hosting service by combining
the advantages of both object storage and filesystem storage,
and carefully tweaking their usages in a distributed manner.

Optimization in Data Transfer: There have been a number
of relevant cloud storage techniques these years, like chunking
[8], [9], [44], delta encoding and deduplication [26], [45], [46]
as well as bundling [47], [48]. However, the APIs provided by
Amazon S3 support none of the above techniques. Fortunately,
EFS and the HyCloud controller can be deployed near enough
to S3 storage servers to overcome their inefficacy, and thus
file transfer operations can be very efficient in virtue of
our advanced file transfer scheme. In addition, by lever-
aging priority assignment that involves virtual completion
time [49], [50], an online dataflow scheduling algorithm is
devised to well balance their timeliness and system overhead.

VII. CONCLUSION

This article presents a cost-efficient filesystem hosting ser-
vice through carefully tweaking the usages of Amazon S3 and
EFS. We first reveal two key observations to address the large-
file download bottleneck when combining the two storage
services in an intuitive manner. Guided by the observations,
we design enabling mechanisms of relay-based file download,
adaptively-adjusted delta encoding, as well as additional file
transfer optimization and geo-distributed instance deployment.
We also devise an online dataflow scheduling algorithm
and additional filesystem operation control mechanisms to
boost timeliness while reducing system overhead. We put the
above proposed techniques together to develop an open-source
HyCloud prototype, which can offer low unit storage price
(close to that of S3) and efficient filesystem operations (as
quickly as in EFS) in a scalable way.
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