
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024 1509

Automating Cloud Deployment for Real-Time
Online Foundation Model Inference

Yang Li , Zhenhua Li , Senior Member, IEEE, ACM, Zhenhua Han ,
Quanlu Zhang, and Xiaobo Ma , Member, IEEE

Abstract— Deep neural network (DNN) foundation models
are currently exhibiting high prediction accuracy and strong
adaptability to broad tasks with remarkably large model scales.
They are increasingly becoming the backend support of DNN-
driven real-time online services, e.g., Siri and Instagram. Such
services require low-latency and cost-efficiency for quality-of-
service and commercial competitiveness. When deployed in a
cloud environment, these services call for an appropriate selection
of cloud configurations (i.e., specific types of VM instances),
as well as a considerate device placement plan that places
the operations of the model to multiple GPUs via model par-
allelism for cost-efficiency. Currently, the deployment mainly
relies on service providers’ manual efforts, which is not only
onerous but also far from satisfactory oftentimes due to the
huge joint search space of cloud configurations and device
placement plans (for a same service, a poor deployment can
incur significantly more costs by tens of times). In this paper,
we attempt to efficiently automate the cloud deployment for real-
time foundation model inference with minimum costs under the
constraint of acceptably low latency. This attempt is enabled by
1) jointly leveraging the Bayesian Optimization and Deep Rein-
forcement Learning to adaptively unearth the (nearly) optimal
cloud configuration and device placement with limited search
time, and 2) enhancing the cost-efficiency of the deployment
based on the probing-informed block multiplexing mechanism
and Tensor Algebra SuperOptimizer. We implement a prototype
system based on TensorFlow, conduct extensive experiments on
top of Microsoft Azure, and demonstrate the generality and
scalability of our solution. Results show that for lightweight DNN
models and foundation models, our solution essentially saves
inference costs by up to 15% and 47% with 57% and 38%
lower search overheads respectively, compared with non-trivial
baselines.

Index Terms— Automating, cloud configuration, deep learning
inference, real-time services.

Manuscript received 4 February 2023; revised 18 September 2023;
accepted 24 September 2023; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor C. Wu. Date of publication 13 October 2023; date
of current version 18 April 2024. This work was supported in part by the
National Key Research and Development Program of China under Grant
2022YFB4500703; in part by the National Natural Science Foundation of
China under Grant 61972313, Grant 61902211, and Grant 62202266; in part
by the Natural Science Basic Research Program of Shaanxi Province under
Grant 2023-JC-JQ-50; in part by the China Postdoctoral Science Foundation
under Grant 2022M721831; and in part by the Microsoft Research Asia under
Grant 100336949. (Corresponding author: Zhenhua Li.)

Yang Li and Zhenhua Li are with the School of Software, Tsinghua
University, Beijing 100190, China (e-mail: liyang14thu@gmail.com;
lizhenhua1983@gmail.com).

Zhenhua Han and Quanlu Zhang are with Microsoft Research Asia, Beijing
100080, China (e-mail: hzhua201@gmail.com; quzha@microsoft.com).

Xiaobo Ma is with the School of Computer Science and Technology, Xi’an
Jiaotong University, Xi’an 710049, China (e-mail: xma.cs@xjtu.edu.cn).

Digital Object Identifier 10.1109/TNET.2023.3321967

I. INTRODUCTION

DEEP learning is currently the de facto standard technique
used in various areas, such as computer vision [1], [2],

speech recognition [3], [4], [5], [6], and natural language pro-
cessing [7], [8], [9], [10]. In recent years, deep neural network
(DNN) foundation models [11] are increasingly becoming cru-
cial back-end support of many real-time online services [12],
[13], such as Siri and Instagram. Such models are pre-trained
common basises, from which many task-specific models are
built via lightweight adaptation instead of trained from scratch,
while manifesting high prediction accuracy due to the sheer
scale of operations and parameters. As the accuracy is ensured
by the foundation model, the performance of a real-time online
service mainly depends on the response time for handling user
requests, which includes the network transmission time, task
scheduling time, inference time (i.e., the execution time of the
DNN inference), and so forth. In the response time, inference
time usually occupies the dominant portion [14], especially
for the large foundation model. Hence, we take inference time
as the major constraint of quality-of-service (QoS) in DNN-
driven real-time online services.

Due to the economies of scale and elasticity of cloud
computing, many real-time online services choose to deploy
their pre-trained foundation models in public clouds (e.g.,
Amazon Web Services, Microsoft Azure, and Google Cloud)
and provide the corresponding inferences to users. A public
cloud typically offers a variety of (e.g., 100+) cloud config-
urations (i.e., specific types of VM instances with different
hardware and OSes [15], [16]) to its customers, which are
specialized to support machine learning jobs. At the moment,
(DNN-driven real-time online) service providers usually arti-
ficially select their cloud configuration. Among the numerous
available cloud configurations, it is not easy for them to find
the best one [15], and thus their selected VM instances are
often either over-configured that lead to a waste of money or
under-configured that slow down the inference.

For the cost-efficiency of service deployment, service
providers also need to consider model parallelism for DNN
inference. Specifically, they should explicitly place the oper-
ations of a DNN on multiple GPUs to accelerate its
inference [17], [18]. Through model parallelism, configura-
tions with multiple low-end GPUs may have similar inference
performance with configurations with one high-end GPU,
while having less cost (as shown in Table IV). Consequently,
a considerate device placement plan, which can well trade

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 20,2024 at 16:14:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3180-3511
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0002-2880-7100
https://orcid.org/0000-0002-0934-5035

1510 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

off the computation parallelism and the inter-device com-
munication overheads, is also called for. In practice, such
a plan is usually artificially designed by service providers
at present. Once again, it is hard for them to make an
optimal or near-optimal device placement plan, especially for
the foundation model with a remarkably large computation
graph [17] (which contains a set of operations with inter-
operation dependencies).

Given the computation graph of a foundation model, finding
the optimal cloud configuration and device placement is highly
challenging, since it involves a huge search space – the joint
space of all available cloud configurations and all possible
device placement plans. Hence, we pose a critical question for
today’s DNN-driven real-time services: how can we automati-
cally determine the cloud configuration and device placement
for the foundation model inference, so as to minimize the
inference cost while satisfying the inference time constraint?
Here inference cost is the product of inference time (in the unit
of second per request) and the price of the cloud configuration
(in the unit of dollar per hour).

In the preliminary work [19], we proposed AutoDeep to
answer the question how to automate the cloud deployment
of the relatively lightweight DNN model inference under
a QoS constraint. Given a DNN model and the inference
time constraint (which should be acceptably low), AutoDeep
attempts to compute the cloud deployment with the lowest
inference cost. We formulate the attempt as a two-fold joint
optimization of cloud configuration and device placement.
In order to enable the attempt, AutoDeep leverages Bayesian
Optimization (BO) for unearthing the (nearly) best cloud con-
figuration within limited search time, and meanwhile utilizes
Deep Reinforcement Learning (DRL) for making the (nearly)
optimal device placement plan. In detail, AutoDeep employs
BO to judge which cloud configuration should be sampled
next to best reduce the inference cost; as for each sampled
cloud configuration, AutoDeep iteratively trains a DRL model
to make the optimal device placement plan. In a nutshell,
AutoDeep strategically learns the characteristics of a DNN
model and the available cloud configurations to figure out a
cost-efficient cloud configuration and device placement plan
under the inference time constraint.

In this paper, when attempting to reuse AutoDeep for the
cloud deployment of the emerging foundation model-based
real-time online services, we encounter two-fold additional
challenges. First, AutoDeep’s joint adoption of BO and
DRL requires running the time-consuming foundation model
inference trial in considerable iterations, making the cloud
deployment rather inefficient. Second, to enable real-time
inference of the large foundation model, the cloud configu-
ration optimized by AutoDeep is high-end, leading to a high
inference cost.

Given the above question and challenges, we upgrade
AutoDeep in terms of the cost-efficiency of the foundation
model inference deployment through two-fold innovations
(Section IV). First, by dynamically tracing the runtime infer-
ence trial through basic-block code instrumentation [20] in
TensorFlow internals, we uncover the root cause of the
long trial run time: there exist heavy startup code blocks

Fig. 1. Architectural overview of the AutoDeep framework.

(including hardware detection, computation graph building,
and CUDA initialization), which are independent of the trial
input but take more than 98% of the time spent by the trial.
Therefore, we advance the original trial scheduling mechanism
of AutoDeep by identifying the startup blocks with the probes
in code instrumentation and pre-executing them in a single
pass, so that the search overhead is significantly reduced since
all trials can reuse the startup basis; the resulting mechanism
is dubbed Probing-Informed Block Multiplexing or PIBM
for short. We also analyze the adaptability of the PIBM
mechanism to other mainstream deep learning frameworks
in Section IV-D.

Moreover, we observe that in the computation graph
of the foundation model, there exist inefficient subgraphs
which severely slow down the model inference. Therefore,
we attempt to reduce the inference cost by employing an
adaptive graph substitution approach called Tensor Algebra
SuperOptimizer (TASO) [21], which can find a semantically
equivalent but remarkably lower-cost DNN computation graph.
The high-level architecture of the up-to-date AutoDeep is
depicted in Figure 1, and the dashed box means that TASO
graph substitution only needs to be executed once in the first
iteration of the joint optimization. Compared with other deep
learning compilers, TASO has better flexibility, compatabil-
ity, and optimization performance regarding the integration
with AutoDeep, as illustrated in Section IV-C.

We implement AutoDeep based on TensorFlow [22] and
build the prototype system on top of VM instances rented
from Microsoft Azure. To comprehensively evaluate the effec-
tiveness and adaptability of AutoDeep, we conduct extensive
experiments using both commonly-used lightweight DNN
models and well-known foundation models, including models
for natural language processing (i.e., RNNLM [23], NMT [24],
BERT [25], Transformer [26], and GPT-2 [27]) and mod-
els for online image classification (i.e., Inception-V3 [28],
ResNeXt-50 [29], and VGG19 [30]). The experiment results
show that AutoDeep improves the inference speed by up to
68% with 98% lower optimization overhead for lightweight
DNN models, and achieves up to 23% faster inference with
90% lower optimization overhead for foundation models,
compared with the non-trivial baselines such as Google’s RL-
based device placement [31]. Moreover, AutoDeep essentially
reduces up to 15% of the inference cost and 57% of the
search time for lightweight DNN models, and saves up to
47% of the inference cost and 38% of the search time for
foundation models, compared with heuristic baselines such as

Authorized licensed use limited to: Tsinghua University. Downloaded on April 20,2024 at 16:14:09 UTC from IEEE Xplore. Restrictions apply.

LI et al.: AUTOMATING CLOUD DEPLOYMENT FOR REAL-TIME ONLINE FOUNDATION MODEL INFERENCE 1511

TABLE I
INFERENCE COST (10000 TIMES) OF DIFFERENT MODELS

ACROSS DIFFERENT CLOUD CONFIGURATIONS

greedy search. We also clarify the scalability of AutoDeep
when the testbed expands in Section V-C.

Roadmap. The remainder of the paper is organized as
follows. In Section III, we present the system model and
formulate the problem. In Section IV, we present our
algorithm AutoDeep. In Section V, we demonstrate the proto-
type setting and the experiments results. We survey the related
works in Section VI and conclude this paper in Section VII.

II. MOTIVATION

In this section, we show the problem and challenges of
automating the cloud deployment for deep learning inference
of real-time online services. We also explain why existing
solutions do not solve the problem.

A. Problem

An appropriate cloud configuration is crucial to the infer-
ence performance and the operation cost of online services.
Different from training a DNN model, the inference of a
DNN model usually supports the online services that run
over months or even years. Table I shows the minimum and
maximum cost of 10000 times inference for 4 popular DNN
models across all cloud configurations in a cloud provider.
We observe a poor cloud configuration can incur up to 14 times
cost compared to the best one.

Online services have the trade-off between operation cost
and performance. Simply using the cheapest or the most
expensive cloud configuration can hardly achieve the optimal
trade-off. Thus, it is important to find a cost-efficient con-
figuration (and device placement) within a QoS constraint.
We focus on model parallelism with multiple GPUs on one
physical machine, since inference performance with multiple
physical machines causes extra bandwidth cost and is highly
affected by the reliability of the communication network [32].

B. Challenges

There are two challenges for picking the cost-efficient cloud
configuration and the optimal device placement plan.

Huge search space: Finding the cost-efficient cloud con-
figuration and the optimal device placement involves a huge
search space. Firstly, cloud service providers usually have
many VM instance types that require users to decide which
ones to use. For example, both AWS and Microsoft Azure
provide over 100 types of cloud configurations. Secondly, even
with a fixed cloud configuration, there still exist a large amount
of different device placement plans. A DNN model can have
hundreds to thousands of operations. Each operation can be
placed on a list of feasible devices (e.g., CPUs or GPUs).

Therefore, the space of feasible device placement plans grows
exponentially with the number of operations. The search space
further expands with the joint of cloud configuration and the
device placement.

Complex performance model: The VM instance types
offered by cloud service providers have heterogeneous con-
figurations on the number of CPU cores, the RAM sizes, the
type of GPUs, the number of GPUs, etc. The cloud charges
users with the amount of running time of the VMs, which is
independent with the job running inside them. It relies on users
to pick the suitable cloud configuration for their workloads.

Under the premise of meeting the QoS requirement (i.e., the
commercial-grade inference speed), users typically consider
low-end cloud configurations for cost-efficiency. In this case,
model parallelism is essential given the following facts: 1) the
inference of large foundation models may run out of memory
with a single low-end GPU device (e.g., the inference of
BERT with a long sequence input runs out of memory on one
GTX 980Ti GPU) but can run on multiple such devices via
model parallelism to satisfy the memory requirement; 2) cloud
configurations with one high-end GPU device can cost times as
much as those with multiple low-end GPU devices (e.g., a con-
figuration with one A100 GPU costs over 3.3 times as much
as that with 2 GTX 980Ti GPUs); 3) inference of lightweight
models that can fit in commercial GPU memory may be further
accelerated through well-organized graph partition via model
parallelism on specific configurations [33].

However, the performance of a DNN with model parallelism
is very complicated [34]. It is hard for users to predict
the inference performance over different cloud configurations.
Especially, different cloud configurations may need different
device placement plans for the best performance. The typical
practice is to heuristically place some code-level operators on
a given device (e.g., a GPU) based on the domain expertise.
But such decisions can be challenging for dynamic DNN with
multiple branches, due to the unclarity and variation of the
hardware performance [35]. Existing algorithmic solvers for
graph partition, such as Scotch [36] and Metis [37], do not
work for this problem, because they need accurate cost models,
which is almost impossible for the complex DNN models.

Specific challenges for foundation model inference: Dif-
ferent from other lightweight task-specific DNN models, the
foundation model is a common basis for many task-specific
models to be built from. Compared with other models, foun-
dation models exhibit higher prediction accuracies due to the
sheer scale of operations and parameters in their computation
graphs and thus their inferences are much more time- and
resource-consuming. Besides, the increasing model scale and
graph complexity of the foundation model make the aforemen-
tioned joint search space even larger, and hence slow down
the convergence of the joint optimization and increase the
overheads significantly.

C. Black-Box Optimization for Combinatorial Problem

The huge search space and the complex performance of
DNN models motivate us to adopt black-box optimization
techniques. Black-box optimization algorithms aim to optimize
an objective function f(x) with or without constraints through

Authorized licensed use limited to: Tsinghua University. Downloaded on April 20,2024 at 16:14:09 UTC from IEEE Xplore. Restrictions apply.

1512 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

a “black-box” interface: the algorithm can query the value of
f(x) at the point x without knowing any other information
(e.g., gradient) and assuming any forms of f(x) (e.g., being
linear or convex). The goal is to find a value of f(x) as good
as possible within the limited time.

The black-box optimization is naturally suitable for solv-
ing the joint optimization of cloud configuration and device
placement for DNN models. Due to the complexity of DNN’s
performance, the inference time of a given device placement
plan under a fixed cloud configuration can be regarded as a
black-box function. An input of the black-box function is the
combination of a cloud configuration associated with a device
placement plan. The goal is to find the minimum inference
cost with a given QoS requirement.

Black-box optimization techniques, such as Bayesian Opti-
mization (BO), have been proved to be effective when the
search space is small [15]. However, they cannot be simply
applied to solve the combinatorial device placement problem
due to the extremely large and exponentially growing search
space. Therefore, we seek for the Deep Reinforcement Learn-
ing (DRL), which has been proved to be effective for solving
the large-scale combinatorial optimization problem [38] with
a black-box objective function, which adopts deep neural
network to exploit the problem structure.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the system models used in this
work and formally define the problem of joint optimization of
cloud configuration and device placement.

A. Cloud Configuration

We consider a cloud service provider that offers the GPU
servers in the form of various cloud configurations. A cloud
configuration is a combination of the computing resources,
typically CPUs and GPUs. For example, Microsoft Azure
provides NC24 configuration with 24 CPU cores and four
NVIDIA K80 GPUs with the price of $3.60 per hour. Users
can choose among the configurations to run their DNN infer-
ence jobs on the clouds.

Suppose there are K types of cloud configurations in
total. The k-th cloud configuration is represented by a set
of computing devices Dk = {dk,1, dk,2, . . . , dk,|Dk|}. Each
device dk,i can be a CPU core or a GPU device. Given that
the performance bottleneck of the model inference mostly lies
on the computation capability of GPU devices, we assume
the memory and disk space in all cloud configurations are
sufficient since for the inference of a typical foundation model,
the requirements for the memory and disk space are quite low
(the memory usage is usually less than 2 GB and the disk
space generally takes less than 5 GB according to our tests).
Therefore, we do not consider memory and disk space in the
rest of the paper.

We assume the CPUs in different configurations have the
same computing capability.1 The price of the k-th cloud
configuration is mk (in the unit of dollar per hour).

1Nowadays, the CPUs in the cloud datacenter are usually customized. The
cloud service provider guarantees that the CPUs in different configurations
have similar performance. Thus only the number of CPU cores matters in
different configurations.

Fig. 2. The computation graph of RNNLM.

Fig. 3. The computation graph of Inception-V3.

B. Computation Graph and Device Placement

The prevalent machine learning frameworks usually abstract
the computation of a DNN inference as a computation
graph (e.g., TensorFlow [22]). Fig. 2 and Fig. 3 demon-
strate the computation graphs of two popular DNN models,
RNNLM [23] and Inception-V3 [28] respectively. The former
is designed for natural language processing and the latter
is designed for image classification. Denote the computation
graph of a DNN inference job as G. The computation graph G
consists of no operations (denoted as O = {o1, o2, . . . ono

}).
There is a set of directed edges in G. Each edge connects two
operations that represent the dependency relationship of them.
If a directed edge connects oi and oj , then the operation oj

can only be started after the finish of the operation oi.
To execute a DNN inference job, each operation in its

computation graph should be placed on a computing device,
e.g., a CPU core or a GPU. We define a device placement
P = (p1, p2, . . . pno

) as a mapping from O to Dk, where
pi is the device the operation oi placed on. Some operations
have the requirement of the placed device, e.g., the input
data reading operation should only be placed on a CPU.
We denote the device requirement of the operation oi in the
k-th configuration as Fi(Dk), i.e., any feasible device place-
ment should satisfy pi ∈ Fi(Dk). Due to the heterogeneity of
GPUs, different placements will result in different computation
time of the graph G. We denote the computation time of the
graph G under the cloud configuration Dk using the device
placement P as T (G,P, Dk). Since the graph execution and
environment involve very complex trade-off between com-
putation and communication in the hardware, it is hard to
define the graph execution time in a close-form. Therefore,
we assume the inference time is a black-box function but can
be profiled accurately given the device placement and cloud
configuration.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 20,2024 at 16:14:09 UTC from IEEE Xplore. Restrictions apply.

LI et al.: AUTOMATING CLOUD DEPLOYMENT FOR REAL-TIME ONLINE FOUNDATION MODEL INFERENCE 1513

TABLE II
IMPORTANT NOTATIONS

C. Problem Formulation

In this paper, we study automating the cloud deployment,
which is formulated as a joint optimization problem of cloud
configuration selection and device placement. We consider the
scenario that we are given a DNN computation graph G and
a QoS constraint, which is the inference time requirement.
Our goal is to find the cloud configuration and device place-
ment with the lowest cost that satisfies the QoS constraint.
We denote the inference time requirement as T . Since simply
searching the cost-efficient cloud configuration in a brute-force
manner is too expensive, the problem should be solved within
a limited search time, which is denoted as M . Formally,
we formulate the optimization problem as follows (important
notations are summarized in Table II):

Minimize :
∑

k∈[K]

x̂k ·mk · T (G,P, Dk), (1)

subject to :

xk ∈ {0, 1},∀k ∈ [K], (2a)
x̂k ∈ {0, 1},∀k ∈ [K], (2b)
pi ∈ Fi(Dk),∀i ∈ [no], (2c)∑
k∈[K]

x̂k = 1, (2d)

∑
k∈[K]

x̂k · T (G,P, Dk) ≤ T , (2e)

∑
k∈[K]

xk · fk(G) ≤ M. (2f)

where xk indicates whether the k-th configuration is tried
during configuration searching, fk(G) is the time spent on
finding the device placement of G using the k-th configura-
tion, x̂k indicates whether the k-th configuration is the final
configuration in the solution. Constraint (2c) guarantees the
feasibility of each candidate device placement. Constraint (2d)
ensures there is only one cloud configuration that is used in the
final solution. Constraint (2e) specifies the QoS constraint of

the final cloud configuration and the device placement. Con-
straint (2f) limits the search time. The optimization objective
in (1) is to minimize the inference cost of the final solution.
In the following section, we design an efficient algorithm that
will iteratively find the cost-efficient cloud configuration and
the device placement, without assuming any knowledge of the
execution environment and the statistical information of the
DNN inference computation graph.

IV. AUTODEEP: UNEARTHING THE COST-EFFICIENT
CLOUD CONFIGURATION AND THE DEVICE PLACEMENT

In this section, we present AutoDeep that can iteratively
unearth the cost-efficient cloud deployment given a foundation
model inference computation graph and its QoS constraint.
Our objective is two-fold: optimizing the cloud configuration
and the device placement while using the least search time.
We start with a high-level overview of the proposed algorithm
AutoDeep, and then describe the details on how we choose the
cloud configuration and find the optimized device placement.

A. Overview of AutoDeep

AutoDeep iteratively finds the cost-efficient cloud configu-
ration and the device placement. Fig. 1 illustrates the algorithm
framework of AutoDeep. In each iteration, AutoDeep first
decides the cloud configuration using a Bayesian Optimization
(BO) based approach. Then, AutoDeep will substitute the
computation graph of the foundation model with a seman-
tically equivalent but lower-cost one through Tensor Algebra
SuperOptimizer (TASO), and try to learn the environment and
optimize the device placement with a DRL based method.
After AutoDeep finds the device placement that satisfies the
QoS constraint or asserts that the QoS constraint cannot
be achieved under this cloud configuration, AutoDeep will
extract the underlying characteristics of the inference job and
the cloud configuration from existing observations and try a
new cloud configuration in the next iteration. The iterations
in AutoDeep are efficiently executed using the proposed
Probing-Informed Block Multiplexing (PIBM) mechanism.

B. Finding the Cost-Efficient Cloud Configuration

For a given DNN with specified QoS constraint, we pre-
pare a set of common GPU configurations and use Bayesian
Optimization to get the cost-efficient configuration via mul-
tiple iterations. Bayesian Optimization is a sequential design
strategy for global optimization of black-box functions that
do not require derivatives. To make the paper self-contained,
we briefly explain the basic concept of Bayesian Optimization.
Please refer to [39] for more details.

Bayesian Optimization has two essential components:
1) a probabilistic model and 2) an acquisition function.
In Bayesian Optimization, Gaussian Process is the most com-
monly used probabilistic model for building the model of the
black-box function. The probabilistic model can be used to
estimate the inference performance under different cloud con-
figurations. The acquisition function is usually used to predict
the expected information gain of each cloud configuration if
it is selected for the trial. Bayesian Optimization iteratively

Authorized licensed use limited to: Tsinghua University. Downloaded on April 20,2024 at 16:14:09 UTC from IEEE Xplore. Restrictions apply.

1514 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

estimates the objective function according to the observed
samples. Then it uses a pre-defined acquisition function to get
the potential gain of the rest candidate samples and choose
the highest one as the next sample. Since the conventional
Bayesian Optimization only optimizes the objective function
without considering any constraint, we use the constrained
acquisition function [40] to overcome this drawback.

To extract more information from the cloud configura-
tion, we replace Dk with the detailed configuration of the
computing devices (including the number of CPU cores, the
CPU clock speed, the number of CUDA cores, the GPU
clock speed, the GPU memory bandwidth and the number
of GPUs on the server). We aggregate these information into
a vector Dk, which redefines the black-box inference time
function T (G,P, Dk) as T (G,P,Dk) (we use T (Dk) for ease
of elaboration when there is no ambiguity).

We begin with the expected improvement (EI) acquisition
function and show we extend it to the constrained EI acqui-
sition function. Let D̂k be a candidate cloud configuration
for next trial. Define T̃ (D̂k) as Gaussian process posterior
estimation for T (Dk). The improvement function is defined as

Ĩ(D̂k) = max{0, mkT (D̂k)−mk∗ T̃ (Dk∗)}, (3)

where k∗ is the cloud configuration with the minimum infer-
ence cost, i.e. k∗ = arg mink mk · T (Dk). Thus the expected
improvement acquisition function becomes

EĨ(D̂k) = E[Ĩ(D̂k)|D̂k], (4)

which can be easily computed with the closed form derived
by Jones et al. [41].

To extend the acquisition function to cover the QoS require-
ment, we first define the constrained improvement acquisition
function as follows:

ĨC(D̂k) = ∆̃(D̂k) max{0, mkT (D̂k)−mk∗ T̃ (Dk∗)}, (5)

where ∆̃(D̂k) is an indicator function whose value is 1 if the
QoS constraint is satisfied (i.e., T (D̂k) ≤ T), and 0 otherwise.
In fact, the quantity ∆̃(D̂k) is a Bernoulli random variable
with the parameter:

Γ(D̂k) = Pr[D̂k ≤ λ]

=
∫ λ

−∞
δ(T (D̂k)|Dk, T̂ (D̂k))d T (D̂k), (6)

where δ(·) is the probability density function. Conveniently,
due to the marginal Gaussianity of D̂k, the quantity Γ(D̂k) is
a univariate Gaussian cumulative distribution function [42].

Finally, we obtain the expected constrained improvement
acquisition function as follows:

EIC(D̂k) = E
[
ĨC(D̂k)|D̂k

]
= E

[
∆̃(D̂k)Ĩ(D̂k)|D̂k

]
= E

[
∆̃(D̂k)|D̂k

]
E

[
Ĩ(D̂k)|D̂k

]
= Γ(D̂k)EĨ(D̂k). (7)

In fact, the expected constrained improvement acquisition
function in eqn. (7) is the expected improvement of D̂k over
the probability that D̂k satisfies the QoS constraint.

Although the goal of cloud configuration searching we
defined is to find the configuration with the lowest inference
cost while satisfying the QoS constraint, our approach can
be easily extended to other performance-related goals, such
as finding the configuration with lowest inference time within
an inference cost constraint [42]. Because we have T̃ (D̂k) to
estimate the inference time of a DNN model under different
cloud configurations, we can design the improvement function
and the acquisition function to cover other performance-related
objectives and constraints. Thus, our approach is very general
for cloud configuration searching.

C. Finding the Device Placement

Graph substitution using TASO.Given that applying the
preliminary AutoDeep [19] for the deployment of the foun-
dation model results in a high inference cost, we explore
graph opimization techniques to further discover the potential
of inference acceleration on affordable cloud configurations.
Motivated by our observation that there exist inefficient sub-
graphs in the computation graph of the foundation model,
we adopt an adaptive graph substitution approach called
Tensor Algebra SuperOptimizer (TASO) [21], which can find
a semantically equivalent but remarkably lower-cost DNN
computation graph. Compared with mainstream deep learning
compilers (e.g., TVM, XLA, MLIR, etc.), TASO has better
compatibility with AutoDeep. This is because these compilers
are end-to-end frameworks that aim at generating executable
modules for diverse computing resources, while TASO solely
works on the computation graph. TASO’s graph substitution
optimizes the graph structure and AutoDeep’s DRL approach
works on the graph computation parallelism, they can pro-
mote each other to reach the optimal inference time of the
foundation model. Besides, the evaluation of TASO [21]
shows that it significantly outperforms these compilers on
inference acceleration. We insert the TASO graph substitution
between the BO-based configuration selection and DRL-based
device placement searching in the first iteration of the joint
optimization, so that TASO only needs to be executed once and
the optimized graph can be reused by all subsequent iterations.

TASO automatically generates and verifys the graph sub-
stitutions along with the runtime performance optimization.
Specifically, a graph substitution has 3 components: a) a
target graph which is matched to subgraphs in the original
computation graph, b) a rewrite graph which is a function-
ally equivalent new subgraph to replace the matched target,
and c) a mapping relation between input/output data in the
target and rewrite graphs. TASO automatically generates and
optimizes the graph substitutions with 3 main modules: the
graph substitution generator, the graph substitution verifier,
and a joint optimizer of graph substitution and data layout.2

Given a set of operator specifications, the graph substitution

2Tensor data in a computation graph can be stored in memory in diverse
layouts. The layout selection highly impacts the runtime performance and
depends on both the operator type and the hardware.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 20,2024 at 16:14:09 UTC from IEEE Xplore. Restrictions apply.

LI et al.: AUTOMATING CLOUD DEPLOYMENT FOR REAL-TIME ONLINE FOUNDATION MODEL INFERENCE 1515

generator constructs all acyclic computation graphs which
do not include duplicate computation based on a depth-first
search algorithm [21]. To efficiently find the rewrite graphs,
the generator employs a two-step hash function to compute
the fingerprint for each graph as follows:

f(g) = hash2({hash1(ti)|i ∈ outs(g)}), (8)

where ti is one of the output tensors of graph g. hash1 cal-
culates the size, shape, and content of the output tensor data.
hash2 is symmetric and applied to an unordered set of hash
values. Then the generator tests the equivalence of graphs with
the same fingerprint on randomized test cases (floating point
numbers ranging between -1 and 1). Two graphs are classified
as equivalent if their outputs differ by no more than 10−5,
and this threshold can be adjusted to filter out the rewrite
graphs that can incur floating point errors. In this way, all
candidate graph substitutions can be generated (the mapping
relation between the input/output tensors can be inferred from
test cases). Furthermore, TASO prunes redundant substitu-
tions, which are identical to more general valid ones, through
renaming input tensors and identifying common subgraphs.

To ensure the correctness of the generated graph substi-
tutions, TASO’s graph substitution verifier utilizes a set of
operator properties expressed in first-order logic to formally
verify the substitutions. Specifically, the verifier models ten-
sor operators using functions of both parameters and input
tensors. For instance, matmul(x, y) represents the matrix
multiplication operator applied to tensors x and y, and the
fact that matrix multiplication is linear can be captured by
the operator property below (ewadd represents element-wise
tensor addition):

∀x, y, z.matmul(x, ewadd(y, z))
= ewadd(matmul(x, y), matmul(x, z)). (9)

With the operator properties, the verifier uses a first-order the-
orem prover (Z3 [43]) to check whether the operator properties
ensure functional equivalence of the target and rewrite graphs
in a generated substitution.

Finally, TASO extends the MetaFlow [44] cost-based back-
tracking search algorithm to find the optimized rewrite graph
by applying verified substitutions to the original computa-
tion graph, while considering possible layout optimization
opportunities. In particular, the cost model in MetaFlow is
motivated by the fact that DNN operators perform dense
linear algebra with no branches, and thus their performance
on hardware is highly consistent and predictable when the
data layouts and configuration parameters are set. Following
the idea of MetaFlow, TASO collects the execution time of a
DNN operator once for each configuration and data layout, and
sums up the measured execution time of operators to estimate
the graph performance. When searching the optimized graph,
TASO maintains a priority queue of all candidate graphs in
the increasing order of cost. The joint optimizer applies each
verified substitution and possible layouts to search for the opti-
mized functionally equivalent rewrite graph. A hyperparameter
α is used to prune the search space: all graphs whose cost is
α times worse than the best discovered graph are ignored to

tradeoff between the search overhead and the rewrite graph
performance. In our evaluation, the default setting (α = 1.05)
exhibits good performance.

DRL-based device placement optimization.After the com-
putation graph of the target model is optimized with TASO,
we explore the potential of graph computation parallelism to
further speed up the inference. We design a model based
on DRL to find the (nearly) optimal device placement for
the target graph in a specified configuration. In our problem,
we should encode the information of the target computation
graph as our model’s input. A natural idea is to input the
information of all the operations in the graph as a sequence of
data to the model. The output of the model can be constructed
as a sequence of devices corresponding to the input operators.
The sequence-to-sequence (Seq2Seq) model works well on the
modeling of sequence data, so we design a Seq2Seq model
as the agent in our DRL method. The agent places the next
operator one-by-one on an available device. Each time an
operator is placed, the system changed to a new state for the
output of the DRL model until all operators are placed. Then
we start to measure the inference time of this placement, which
is the reward for training the Seq2Seq model.

Under the cloud configuration Dk, we propose to train a
policy π(P|G; θ) to minimize the objective:

J(θ) = ET (G,P,Dk)∼π(P|G;θ)[(P)|G]. (10)

The policy is defined by an attentional Seq2Seq model which
is introduced in detail below, and θ denotes the weight
parameters in the Seq2Seq network. The parameters in the
network are learned by Adam optimizer [45] based on the
REINFORCE equation [46], a commonly used policy gradient
method, which is given as follows:

∇θJ(θ) = EP∼π(P|G;θ)[T (G,P, Dk) �∇θlogp(P|G; θ)].

We estimate the gradient by drawing K samples from
Pi ∼ π(�|G; θ). We reduce the variance of policy gradients
by using a baseline term B:

∇θJ(θ) ≈ 1
K

K∑
i=1

((Pi)−B) �∇θlogp(P|G; θ). (11)

We set B as our baseline experiments’ results. The reward
function (Pi) is simply designed as the execution time of the
DNN under the placement Pi in current configuration, which
works well in the training process. We also set a random
rate, which reduces with the increasing number of episodes,
to encourage our model to explore more placements.

We use a sequence-to-sequence model with LSTM [23] and
a content-based attention mechanism to predict the placements,
as shown in Fig. 4. Traditional sequence models encode
the input information into a fixed-length vector. In a DNN
computation graph, there are usually thousands of operations
and it is difficult for the model to compress all the necessary
information into a fixed-length vector. In contrast, the attention
mechanism encodes the input sentence into a sequence of
vectors and chooses a subset of these vectors adaptively while
decoding, thus the model can make better use of the input
information of the encoder. Our model can be divided into
two parts: encoder and decoder. The details are as follows.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 20,2024 at 16:14:09 UTC from IEEE Xplore. Restrictions apply.

1516 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Fig. 4. Architecture of the device placement model. Each operator (op-i for short, i ∈ [1, n]) in the DNN inference job is placed based on the model
sampling and executed on the customized TensorFlow in each iteration of DRL.

Our encoder is a bidirectional RNN and its input is the
sequence of operations of the input graph, which is in topo-
logical order. We hope that our model can learn not only
each operation’s output but also input information, so we use
bidirectional RNN as the encoder. We embed the operations
by concatenating their information (including three attributes:
type, output shape and adjacency information). The type of
an operation describes its underlying computation. We use
operations’ types at the code level, such as Conv2D, and store
a tunable embedding vector for each type. We also collect the
size of each operation’s list of output tensors and change them
into a fixed-size zero-padded list called the output shape. The
adjacency information of the input graph is constructed as an
one-hot encoding vector that represents the operations that are
direct inputs and outputs to each operation. Finally, the input
vector of each operation is the concatenation of its type, output
shape and adjacency vector.

The decoder is an attentional LSTM with a fixed number of
time steps. The number of time steps is equal to that of input
operations in the DNN inference model. The decoder outputs
the GPU devices for the operation at the same encoder time
step and each GPU device has its own embedding vector. The
output of the decoder’s one time step is fed as input to the next
decoder time step because there are no correct labels in our
problem and the model should predict the device according to
the previous information.

D. Probing-Informed Block Multiplexing

In practice, we find that the computation-intensive nature
of the foundation models brings additional challenges regard-
ing the cost-efficiency of the deployment. Specifically, large
amounts of inference trials need to be run with the joint
adoption of BO and DRL, and in each trial the startup and
inference of the foundation model (which is time-consuming)
are performed, leading to high search overhead.

To uncover the reason why the foundation model infer-
ence trials in AutoDeep are time-consuming, we perform the
basic-block code instrumentation to the internals of Tensor-
Flow in order to dynamically trace the runtime inference trial.
In particular, a basic block is defined as a code sequence
with no branches in except to the entry and no branches

Fig. 5. Startup time and inference time of various DNN models.

out except at the exit. A typical feature of a basic block
is that as soon as the first instruction in the block is exe-
cuted, all the codes within the block are executed only
once in sequence. Keeping this in mind, we scan over the
key TensorFlow function calls in the trial process and trace
back to the internal code of each function (mainly located
in tensorflow/tensorflow/core/common_runtime and
tensorflow/tensorflow/core/graph in TensorFlow r1.4),
and mark block boundaries which are instructions that may
either begin or end a basic block. Between each pair of adja-
cent ending and starting boundaries, we instrument analysis
code as probes to record key runtime information (including
the functionality, input/output, and time overhead) of the
ending block. In this way, the core functions of the trial are
decomposed into basic code blocks, and the critical path of
the trial process can be clearly observed. After functional and
statistical analysis of the blocks, we notice that there exist
heavy startup blocks (including hardware detection, computa-
tion graph building, and CUDA initialization), which serve as
the preparation phase of the inference in TensorFlow. Such
blocks are independent of the trial input (i.e., the device
placement plan) but contribute more than 98% of the time
spent by the trial. Fig. 5 further shows the comparison between
the startup time and the inference time of eight popular DNN
models. The inference time is usually faster than the startup
time by one or two orders of magnitude.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 20,2024 at 16:14:09 UTC from IEEE Xplore. Restrictions apply.

LI et al.: AUTOMATING CLOUD DEPLOYMENT FOR REAL-TIME ONLINE FOUNDATION MODEL INFERENCE 1517

TABLE III
COMPARISON OF THE INITIALIZATION TIME AND INFERENCE TIME FOR

ONE-TIME BERT INFERENCE WITH A NVIDIA RTX 2080TI GPU
USING DIFFERENT FRAMEWORKS. THE STARTUP RATIO IS THE

PROPORTION OF THE INITIALIZATION TIME IN THE
INFERENCE TRIAL EXECUTION TIME

Based on the above observation, we propose the
probing-informed block multiplexing (PIBM) mechanism to
accelerate the iterative search of device placement plans
in AutoDeep. We first utilize the probes instrumented in the
critical path of the trial process to precisely identify the
startup blocks. To avoid repeating the heavy startup executions,
we then reorganize the iterative trials into one program, where
the startup blocks are executed first in a single pass so that
other iteratively-executed blocks can reuse the startup basis.
In this way, the overhead of the redundant startups after the
change of the input device placement plan can be avoided.

To make clear the potential adaptability of the PIBM mecha-
nism to other mainstream deep learning frameworks (including
PyTorch, MXNet, PaddlePaddle, etc.), we study their internals
and further conduct benchmark tests based on each of them,
as shown in Table III. It is observed that the initializations
of all the tested frameworks take more than 97% of the time
spent by one inference of BERT. In fact, hardware detection
and CUDA initialization are required in all frameworks based
on NVIDIA GPUs [47], and NVIDIA GPUs are more powerful
with better technical supports than other GPUs regarding DNN
inference on these frameworks [48].

As for computation graph building, there are mainly two
types: one is the static graph represented by TensorFlow,
and the other is the dynamic graph represented by PyTorch.
The static graph needs to be completely built first and then
executed (leading to better runtime performance but poorer
user-friendliness), while the dynamic graph is defined on the
fly via the actual forward computation and thus it is easier
to program and debug with relatively inferior runtime per-
formance. This explains why TensorFlow suffers from longer
initialization than PyTorch in our tests, and it can also be
indicated that PIBM can be effective for dynamic-graph-based
frameworks like PyTorch according to the startup ratio column
in Table III. To conclude, the proposed PIBM mechanism
should be mostly applicable to other mainstream deep learning
frameworks.

E. Prototype Implementation

We implement AutoDeep on TensorFlow r1.4 [49] with
1500 lines of code. Given the fact that the graph substitution
can be pre-executed before the joint searching of BO and
DRL, we use an independent python script to optimize the

computation graph of the target model with TASO graph sub-
stitution and convert the onnx-format graph-optimized model
to a TensorFlow model. Since TensorFlow has no APIs for
extracting the computation graph and changing the device
placement, we customize TensorFlow to add these APIs so
that AutoDeep can interact with TensorFlow to get and change
the device placement plan. To accelerate the search of device
placement, we introduce the aforementioned PIBM mechanism
in TensorFlow to mitigate the overhead of rebooting a job after
the device placement plan is changed. The core functions of
TensorFlow’s computation graph partition is in

tensorflow/tensorflow/core/graph/graph_partition.cc.

The function Partition() is used to execute graph partition.
We modify Partition() so that it can read our placement
file, which is generated by our model and formed as
(operator_name, device_id), and apply the placement before
inference. In order to obtain necessary information and change
the device placement in TensorFlow, we introduce three APIs:
• DumpComputationNode(): to dump the operator informa-

tion (e.g., type, name and assigned device) of each node;
• DumpTensorShape(): to dump the input or output tensor

dimensions of directed edges (including control edges) of
the computation graph;

• SetDevicePlacement(new_plan): to replace the device
placement plan in TensorFlow with a new plan.

The first two APIs extract the graph information, which is the
input of the Seq2Seq model. The third API sets the device
placement plan with the decisions given by the DRL model.

Without using the SetDevicePlacement API we introduced,
by default, the device placement should be decided when the
computation graph is built before the inference. When the
device placement is changed by our DRL algorithm, the trial
should be restarted to rebuild the computation graph with the
new placement plan, which incurs the significant overhead of
startup time, as illustrated in Sec IV-D.

In order to speed up our training process, we implement the
PIBM mechanism in SetDevicePlacement API to change the
device placement in an on-demand manner. After sampling
the inference time of one placement, the program will hang to
wait for a new device placement plan derived from the DRL
model. In this way, the startup overhead after the change of
device placement can be avoided.

V. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of
AutoDeep using both commonly-used lightweight DNN
models (i.e., RNNLM, InceptionV3, NMT, and ResNeXt-50)
and well-known foundation models (i.e., BERT, VGG19,
Transformer, and GPT-2). Through the experiments under real
cloud environments, we illustrate in a fine-grained manner
how AutoDeep finds the cloud configuration, and compare the
quality of the device placements of AutoDeep and non-trivial
baselines. The highlights are:
• Under the same cloud configuration, AutoDeep improves

the inference speed for lightweight DNN models and
foundation models by up to 68% and 23% with 98% and
90% lower optimization overheads, respectively.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 20,2024 at 16:14:09 UTC from IEEE Xplore. Restrictions apply.

1518 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

TABLE IV
CONFIGURATION DETAILS

• Given a fixed search time limit, AutoDeep finds the cloud
configuration satisfying the QoS constraint with up to
15% lower inference cost for lightweight DNN models
and 47% for foundation models.

• AutoDeep saves up to 57% and 38% search time on light
weight DNN models and foundation models, respectively.

A. Testbed Experiment

Setup: We deploy AutoDeep in Microsoft Azure cluster and
our local testbed. There are 15 cloud configurations includ-
ing NVIDIA K80, NVIDIA P100, NVIDIA GTX 1080 and
NVIDIA 980Ti. The detailed configurations and their price
are listed in Table IV.

Workloads: To test the performance of AutoDeep, we use
both popular lightweight DNN models (i.e., InceptionV3,
ResNeXt-50, RNNLM, and NMT) and foundation models (i.e.,
VGG19, Transformer, BERT, and GPT-2) in computer vision
and natural language processing.
• Inception-V3 [28] is one of the most popular DNN mod-

els for image classification and visual feature extraction.
Note that the model is connected by multiple blocks.
Each block consists of multiple branches of convolution
layers and pooling layers. Thus, within each block, the
operations on different branches can be computed in
parallel. However, the barrier at the end of each block
limits the potential for exploiting higher parallelism.

• ResNeXt-50 [29] is a 50-layer homogeneous neural
network that reduces the number of hyperparameters
required by conventional ResNet. The ResNeXt block in
its architecture has a cardinality of 32.

• Recurrent Neural Network Language Model (RNNLM)
has multiple LSTM layers [23]. Since the architecture is
grid-based, this model has great potential to be executed
in parallel on multiple devices. The LSTM cells can
be executed as soon as their dependent outputs become
available.

• Neural Machine Translation (NMT) [24] is an 8-layer
sequence-to-sequence model with the encoder-decoder
architecture. The structure of its computation graph is
also grid-based with huge potential for model parallelism.

• VGG19 [30] is a popular foundation model trained on
ImageNet [50] for image classification. Since VGG19
has an inherently tightly-coupled structure, we explore
its potential of model parallelism by decoupling its struc-
ture through the DeCNN model parallelism optimization
approach [51], which has negligible effect on the model
accuracy. In this way, the inference of VGG19 can be

further accelerated through the device placement opti-
mization in AutoDeep.

• The transformer [26] is a foundation model that aims
to solve sequence-to-sequence tasks while handling
long-range dependencies with ease. Its architecture fol-
lows an encoder-decoder structure and it relies on the
parallel multi-head attention mechanism.

• Bidirectional Encoder Representations from Transformers
(BERT [25]) is a typical foundation model for natural
language processing with a large number of operations
and a complex structure. The original English-language
BERT has 2 versions of different sizes (BERT-Base
and BERT-Large). We use BERT-Base with a maximum
sequence length of 325 and a batch size of 24.

• Generative Pre-trained Transformer 2 (GPT-2) [27] is a
language foundation model by OpenAI. Its architecture
allows for greatly increased parallelization.

B. Heuristic Baselines

To compare the performance of AutoDeep, we further
implement several heuristic baselines in our experiments.
Since AutoDeep is the first algorithm that jointly optimizes
the cloud configuration and the inference speed, we choose
the baselines only achieving one of the two objectives.

For the cloud configuration searching, we choose the fol-
lowing baselines:
• Genetic Algorithm (GA) [52]: GA is inspired by the

process of natural selection. Its genetic representation is
defined as the vector Dk in Sec. IV-B, and its fitness
function is set as the expected improvement acquisition
function of BO.

• Differential Evolution (DE) [53]: The representation and
the fitness function in DE share the same settings with
GA. Different from GA, the mutation in DE is based on
the differential results of the representation vectors.

• Lowest Cost First (LCF): LCF follows the greedy strat-
egy and tries the cloud configurations in the ascending
order of their unit price. Since our goal is to find the
configuration that satisfies the QoS constraint with the
minimum inference cost, it stops searching until the QoS
constraint is satisfied.

• Uniform: Uniform tries the cloud configurations with
the uniform probability and stops until the search time
exceeding a time limit.

Note that knowing inference cost of a cloud configuration (i.e.,
inference time×configuration unit price) requires revealing the
inference performance, which is expensive and prior unknown.
Thus LCF uses the unit price instead of inference cost when
deciding the searching priority.

For inference acceleration using device placement,
we choose the following baselines:
• Expert Designed: For lightweight DNN models,

we mainly use the hand-crafted placements given by
Mirhoseini et al. [17]. The Inception-V3 model and the
ResNeXt-50 model are heuristically partitioned into the
parts with almost the same number of layers. Each LSTM
layer in the RNNLM/NMT model is put on a GPU
device. For VGG19, we use the partitioning scheme

Authorized licensed use limited to: Tsinghua University. Downloaded on April 20,2024 at 16:14:09 UTC from IEEE Xplore. Restrictions apply.

LI et al.: AUTOMATING CLOUD DEPLOYMENT FOR REAL-TIME ONLINE FOUNDATION MODEL INFERENCE 1519

Fig. 6. The performance of device placement on four K80 GPUs.

given by Du et al. [51]. For language models, we use
the BERT implementation given by Google and use the
implementations of Transformer and GPT-2 given by
HuggingFace [], which do not support model parallelism
on multiple GPUs by default.

• Google’s RL-based Device Placement (Google-RL):
The reinforcement learning-based approach proposed by
Google that only considers the device placement under
a fixed cloud configuration [31]. Different from our
approach, Google-RL uses GraphSAGE as the graph
encoder combined with a Transformer-based placer.

• Single-GPU: This placement executes the entire DNN
model on a single GPU. We only place the operation to
CPU when it has no GPU implementation.

C. Experiment Results

Performance of Inference Acceleration. To evalu-
ate the performance of the inference acceleration module
in AutoDeep (the joint adoption of TASO graph substitution
and the DRL-based device placement optimization), we first
fix the cloud configuration to the server with four NVIDIA
K80 GPUs. Since we additionally optimize the graph through
TASO graph substitution compared with other baselines,
we also take the optimization time overhead into consideration
to fairly evaluate the cost-efficiency. Fig. 6 demonstrates the
performance of AutoDeep (w/TASO), AutoDeep (w/o TASO),
and the three baselines. The results are normalized to the
inference time of the device placement derived by AutoDeep.
Table V presents the optimization overheads of AutoDeep
(w/TASO) and Google-RL. The data of AutoDeep (w/o TASO)

TABLE V
COMPARISON OF OPTIMIZATION OVERHEADS

Fig. 7. Inference cost under commercial-grade QoS constraints.

is not listed since it is the same as the data of AutoDeep
(w/TASO) when the data is shown in hours. This is because
the graph optimization of TASO only takes a few seconds,
while AutoDeep (w/o TASO) takes tens of minutes or even
hours.

Thanks to the lightweight feature of TASO and the pro-
posed PIBM mechanism, AutoDeep (w/ TASO) outperforms
the baselines in both inference time of target models and
optimization overheads. AutoDeep (w/ TASO) improves the
inference time of lightweight DNN models and foundation
models by up to 68% and 23%, and saves up to 98% and
90% optimization overheads compared with heuristic base-
lines, respectively. For lightweight DNN models, it may be
surprising that the expert-designed device placement has worse
performance than that in the single-GPU configuration. The

Authorized licensed use limited to: Tsinghua University. Downloaded on April 20,2024 at 16:14:09 UTC from IEEE Xplore. Restrictions apply.

1520 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

reason is that a human expert has no knowledge of the under-
lying GPU configuration when deciding the placement. Thus
the human-designed device placement may not be suitable
for the cloud configuration. Actually, the bad performance
of human-designed device placement in our experiments
is consistent with previous observations on DNN training
jobs reported by Mirhoseini et al. [17]. Although Google-
RL experienced an upgrade from the Seq2Seq model-based
approach [17] to the encoder-placer structure [31], it does not
find much better device placement plans than using a single
GPU for lightweight DNN models but takes much longer
optimization time than AutoDeep (w/ TASO).

For foundation models, although AutoDeep (w/o TASO)
has similar performance with Google-RL, the integration of
AutoDeep and TASO not only achieves up to 23% faster
inference than Google-RL, but also reduces up to 90% opti-
mization overheads compared with Google-RL. We believe
this is because TASO brings additional potential on model
parallelism when substituting the inefficient subgraphs, result-
ing in synergy effects on the inference acceleration. The
expert-designed partitioning scheme of VGG19 outperforms
the single-GPU baseline significantly, but it still has perfor-
mance gaps compared to the DRL-based approaches.

As the inference acceleration of AutoDeep (w/ TASO)
outperforms all the baselines, we use the DRL-based algorithm
combined with TASO graph substitution to speed up the model
inference in each cloud configuration searching trial in the
following evaluation.

Performance of Cloud Configuration Searching. Since
the DRL-based algorithm combined with TASO graph sub-
stitution takes > 99% of the time spent by each cloud
configuration searching trial in both AutoDeep and the base-
lines, we use the number of measurements as the search cost
to evaluate the searching efficiency of AutoDeep. Specifically,
we set the search time limit to 6 trials and compare the
inference cost of the cloud configuration found by the three
algorithms given commercial-grade QoS constraints. Fig. 7(a)
and Fig. 7(b) depict the (normalized) inference cost of light
weight DNN models and foundation models when satisfying
the QoS constraint, respectively. AutoDeep achieves the best
performance in all models. For lightweight DNN models and
foundation models, AutoDeep reduces the inference cost by up
to 15% and 47% compared to the best baselines, respectively.
For BERT and GPT-2, LCF fails to find any feasible cloud
configuration since they either run out of memory or take a
long inference time that does not satisfy the QoS constraint
in low-end cloud configurations. Besides, we further observe
that with more relaxed QoS constraints, all five algorithms
find cloud configurations with lower inference cost, and
AutoDeep finds the most efficient one in all settings.

Dissecting the Search Efficiency. To understand why
AutoDeep is more efficient on configuration searching, we dis-
sect how the inference cost changes with more measurements.
Given the local similarities between the graph structures of
certain workloads, we select 4 typical workloads (2 lightweight
DNN models and 2 foundation models) with significantly
different graph structures for detailed analysis. Fig. 8(a)
and Fig. 8(b) demonstrate the change of inference cost

Fig. 8. Inference cost with varying number of measurements.

(normalized to the best configuration) of lightweight DNN
models (RNNLM and InceptionV3) and foundation models
(BERT and VGG19), respectively. The QoS constraint is set
to be close to 2× of the inference time of the best configuration
for each model. The dash lines show the inference cost before
the algorithms find a QoS-satisfied cloud configuration.

For RNNLM, AutoDeep finds the feasible configuration
that satisfies the QoS constraint at the 2nd trial, and the
optimal configuration at the 6-th trial. Both GA and DE find
the best configuration at the 8-th trial, while GA finds the
feasible configuration at the 3-rd trial but stalls in the following
4 trials. Both Uniform and LCF find the best configuration at
the 9-th trial, while Uniform finds the feasible configuration
at the 4-th trial with a high inference cost. Similarly, for
Inception-V3, both AutoDeep and Uniform find the feasible
configuration at the 3rd trial but AutoDeep finds the optimal
configuration. Since Inception-V3 performs much better on
the P100 GPUs, which are more expensive than the other
configurations, LCF performs not well as it finds the feasible
(and the optimal) configuration at its 8-th trial. Both GA
and DE find the optimal configuration after the 8-th trial,
since such evolution-based heuristics require more warm-up
measurements.

For BERT, we hide the trials in which the BERT model
runs out of memory with the corresponding configurations.
As shown in Fig. 8(b), AutoDeep reaches the feasible config-
uration that satisfies the QoS constraint at the 3rd trial, and the
optimal configuration at the 5-th trial. DE finds the feasible
configuration at the 5-th trial with a very high inference
cost, but finds the optimal configuration within the following
3 trials. Since BERT requires relatively large GPU memory,
high-end configurations are preferred considering the QoS

Authorized licensed use limited to: Tsinghua University. Downloaded on April 20,2024 at 16:14:09 UTC from IEEE Xplore. Restrictions apply.

LI et al.: AUTOMATING CLOUD DEPLOYMENT FOR REAL-TIME ONLINE FOUNDATION MODEL INFERENCE 1521

constraint. This leads to the bad performance of LCF as it finds
the first feasible and also the best configuration at the 8-th trial.
For VGG19, AutoDeep also exhibits the best performance as it
finds the feasible configuration at the 4-th trial and the optimal
configuration at the 5-th trial. DE, LCF, and Uniform all find
the feasible configuration at the 5-th trial, and DE and LCF
find the best one with 22% lower search cost compared with
Uniform. For both models, GA and Uniform perform worst as
they both find the optimal configurations at their 9-th trials.
Compared with the best baselines, AutoDeep finds the optimal
configurations with 38% and 29% lower search costs for BERT
and VGG19, respectively.

Discussing the Scalability of AutoDeep. Due to the lim-
itation of our testbed, there are 15 configurations included
in the performance evaluation. However, if the configuration
pool is much larger with more than 100 candidate VMs,
we believe AutoDeep can also be well applied to find a
near-optimal solution in a reasonable time. In fact, even
for the inference of large foundation models, one up-to-date
high-end GPU device (e.g., NVIDIA A100) is capable of
satisfying the commercial-grade QoS requirement (but is too
costly for users). Configurations with multiple high-end GPU
devices are highly over-configured. When exploring into such
configurations in the searching process AutoDeep turns back
fast without wasting additional overheads, since in such cases
BO prevents high inference cost and DRL converges fast.
Besides, the PIBM mechanism significantly speeds up the
searching of AutoDeep by up to 98%. Above all, we believe
AutoDeep has the potential to derive a near-optimal solution
in several hours.

VI. RELATED WORK

Our work integrates cloud configuration searching with
DNN acceleration. AutoDeep determines the cloud configura-
tion using Bayesian Optimization and accelerate DNN using
graph partition based on the technique of DRL. We review
related literature in this section.

Cloud Configuration. Choosing the right cloud config-
uration for DNN inference is essential to the quality of
service and commercial competitiveness [54]. Early work such
as [55] develops a platform called CloudAdvisor to explore
various cloud configurations which are recommended based on
user preferences. CherryPick is a system designed in [15] to
choose the best cloud configurations for big data analytics.
These methods are for big data applications but they ignore
the characteristics of DNN inference for the deployment of
real-time DNN-driven services, in a sense that even in a
fixed configuration there exist different device placements with
different inference speeds. Our approach can find both the
cost-efficient configuration and its appropriate device place-
ment satisfying the QoS constraint.

Parameter Tuning with Bayesian Optimization. Bayesian
Optimization is one of the promising techniques used for
parameter tuning. It has been used in searching optimal DNN
hyperparameters for higher accuracy [40], [56], and finding
the best cloud configuration for big-data analytics [15], [57].
These works usually use BO to optimize the objective function
without considering any constraint. AutoDeep is a parallel

work which jointly optimizes the cloud configuration and the
device placement. Moreover, AutoDeep not only minimizes
the inference cost but also considers the QoS constraint when
optimizing the DNN inference model.

DNN Acceleration. Performing inference on DNN models
meets the requirement of low-latency in practice [17], [18],
[58], [59], [60]. In 2022, Unger et al. [61] propose unified
parallel computation graph representations to jointly optimize
algebraic transformations and parallelization in distributed
DNN training. They pursuit extreme DNN training efficiency
without considering the economic cost of the device configura-
tions, while AutoDeep brings the monetary cost into modeling
to optimize the cost-efficiency of the cloud deployment for the
real-time foundation model inference since cost-efficiency is
crucial for such services. Zheng et al. [62] design a number
of compilation passes to jointly optimize inter-operator and
intra-operator parallelisms. Their modeling is static given fixed
cluster configuration information, while AutoDeep is more
practical with the joint modeling informed by inference per-
formance in the dynamic execution environments of the cloud
configurations. From 2017 to 2021, Mirhoseini et al. [17],
Gao et al. [18], Zhou et al. [31], and Lan et al. [63] pro-
pose various DRL-based approaches to optimize the device
placement for DNN training with similar modeling algebras.
Our work applies this technique to accelerate DNN inference
and combines it with BO to compute the cost-efficient cloud
configuration in consideration of the runtime environment.

Conventional Graph Partition. Graph partition has been
intensively studied in various domains, such as sensor net-
works [64]. Existing works [36], [65], [66], [67], [68] start
from an initial partition and use several refinement methods
to explore similar partitions to improve after iterations. Other
works such as [37] and [69] perform spectral analysis on
the matrix representation of the graph and also employ an
iterative refinement approach to partition them. However, for
DNN computation graphs, they do not work well because it is
hard to construct cost models for the graphs under all kinds
of cloud configurations.

VII. CONCLUSION

In this paper, we study the problem of automating the cloud
deployment for real-time foundation model inference. We pro-
pose AutoDeep that can adaptively choose the cost-efficient
cloud configuration and the device placement for foundation
model inference jobs. We further enhance the cost-efficiency
of AutoDeep’s deployment with TASO graph substitution
and the PIBM mechanism. We implement AutoDeep with
TensorFlow and conduct extensive experiments on Microsoft
Azure. The experiments with both popular lightweight DNN
models and foundation models show that AutoDeep can sig-
nificantly improve the inference speed, the search speed, and
reduce the inference cost compared with non-trivial baselines,
including Google’s RL-based method for device placement and
Differential Evolution for cloud configuration.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, 2012,
pp. 1097–1105.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 20,2024 at 16:14:09 UTC from IEEE Xplore. Restrictions apply.

1522 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[3] G. Hinton et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[4] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in Proc. ICML, 2014, pp. 1764–1772.

[5] A. Hannun et al., “Deep Speech: Scaling up end-to-end speech recog-
nition,” 2014, arXiv:1412.5567.

[6] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell:
A neural network for large vocabulary conversational speech recog-
nition,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Mar. 2016, pp. 4960–4964.

[7] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. NIPS, 2014, pp. 3104–3112.

[8] K. Cho et al., “Learning phrase representations using RNN encoder–
decoder for statistical machine translation,” 2014, arXiv:1406.1078.

[9] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014, arXiv:1409.0473.

[10] Y. Wu et al., “Google’s neural machine translation system: Bridging the
gap between human and machine translation,” 2016, arXiv:1609.08144.

[11] R. Bommasani et al., “On the opportunities and risks of foundation
models,” 2021, arXiv:2108.07258.

[12] D. Wang, W. Cao, J. Li, and J. Ye, “DeepSD: Supply-demand prediction
for online car-hailing services using deep neural networks,” in Proc.
IEEE 33rd Int. Conf. Data Eng. (ICDE), Apr. 2017, pp. 243–254.

[13] Q. Ye, Z. Zhang, and R. Law, “Sentiment classification of online reviews
to travel destinations by supervised machine learning approaches,”
Expert Syst. Appl., vol. 36, no. 3, pp. 6527–6535, Apr. 2009.

[14] A. Gujarati, S. Elnikety, Y. He, K. S. McKinley, and B. B. Brandenburg,
“Swayam: Distributed autoscaling to meet SLAs of machine learn-
ing inference services with resource efficiency,” in Proc. 18th
ACM/IFIP/USENIX Middleware Conf., Dec. 2017, pp. 109–120.

[15] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “CherryPick: Adaptively unearthing the best cloud config-
urations for big data analytics,” in Proc. USENIX NSDI, vol. 2, 2017,
pp. 469–482.

[16] H. Lin et al., “Virtual device farms for mobile app testing at scale:
A pursuit for fidelity, efficiency, and accessibility,” in Proc. ACM
MobiCom. New York, NY, USA: ACM, 2023, pp. 1–17, Art. no. 45,
doi: 10.1145/3570361.3613259.

[17] A. Mirhoseini et al., “Device placement optimization with reinforcement
learning,” 2017, arXiv:1706.04972.

[18] Y. Gao et al., “Spotlight: Optimizing device placement for training deep
neural networks,” in Proc. ICML, 2018, pp. 1662–1670.

[19] Y. Li, Z. Han, Q. Zhang, Z. Li, and H. Tan, “Automating cloud deploy-
ment for deep learning inference of real-time online services,” in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), Jul. 2020, pp. 1668–1677.

[20] M. M. Tikir and J. K. Hollingsworth, “Efficient instrumentation for code
coverage testing,” ACM SIGSOFT Softw. Eng. Notes, vol. 27, no. 4,
pp. 86–96, Jul. 2002.

[21] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and A. Aiken,
“TASO: Optimizing deep learning computation with automatic genera-
tion of graph substitutions,” in Proc. 27th ACM Symp. Operating Syst.
Princ., Oct. 2019, pp. 47–62.

[22] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. USENIX OSDI, 2016, pp. 265–283.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[24] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in Proc. ICLR, 2015, pp. 1–15.

[25] J. D. M.-W. C. Kenton and L. K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in Proc.
NAACL-HLT, 2019, pp. 4171–4186.

[26] A. Vaswani et al., “Attention is all you need,” in Proc. NIPS, vol. 30,
2017, pp. 1–11.

[27] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” in Proc. OpenAI
Blog, vol. 1, 2019, pp. 1–24.

[28] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[29] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5987–5995.

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[31] Y. Zhou et al., “GDP: Generalized device placement for dataflow
graphs,” 2019, arXiv:1910.01578.

[32] Y. Li et al., “A nationwide study on cellular reliability: Measure-
ment, analysis, and enhancements,” in Proc. ACM SIGCOMM Conf.,
Aug. 2021, pp. 597–609.

[33] H. Zhou, M. Li, N. Wang, G. Min, and J. Wu, “Accelerating deep
learning inference via model parallelism and partial computation offload-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 2, pp. 475–488,
Feb. 2023.

[34] W. Xiao et al., “Gandiva: Introspective cluster scheduling for deep
learning,” in Proc. USENIX OSDI, 2018, pp. 595–610.

[35] K. Ousterhout, C. Canel, S. Ratnasamy, and S. Shenker, “Monotasks:
Architecting for performance clarity in data analytics frameworks,” in
Proc. 26th Symp. Operating Syst. Princ., Oct. 2017, pp. 184–200.

[36] F. Pellegrini, “Distillating knowledge about SCOTCH,” in Proc.
Dagstuhl Seminar, 2009, pp. 1–12.

[37] G. Karypis and V. Kumar, “METIS—Unstructured graph partitioning
and sparse matrix ordering system,” Dept. Comput. Sci., Univ. Min-
nesota, Minneapolis, MN, USA, White Paper Version 2.0, 1995.

[38] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neu-
ral combinatorial optimization with reinforcement learning,” 2016,
arXiv:1611.09940.

[39] M. Pelikan, D. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian
optimization algorithm,” in Proc. GECCO, 1999, pp. 525–532.

[40] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
optimization of machine learning algorithms,” in Proc. NIPS, 2012,
pp. 2951–2959.

[41] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimiza-
tion of expensive black-box functions,” J. Global Optim., vol. 13, no. 4,
pp. 455–492, Dec. 1998.

[42] J. R. Gardner, M. J. Kusner, Z. E. Xu, K. Q. Weinberger, and
J. P. Cunningham, “Bayesian optimization with inequality constraints,”
in Proc. ICML, 2014, pp. 937–945.

[43] L. D. Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proc.
Int. Conf. Tools Algorithms Construct. Anal. Syst. (TACAS). Berlin,
Germany: Springer, 2008, pp. 337–340.

[44] Z. Jia, J. Thomas, T. Warszawski, M. Gao, M. Zaharia, and A. Aiken,
“Optimizing DNN computation with relaxed graph substitutions,” in
Proc. MLSys, vol. 1, 2019, pp. 27–39.

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[46] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, May 1992.

[47] NVIDIA. (2023). CUDA Zone. [Online]. Available: https://developer
.nvidia.com/cuda-zone

[48] M. J. White. (2023). AMD is Losing the AI Battle, and It’s Time It
Started to Worry. [Online]. Available: https://www.digitaltrends.com/
computing/why-amd-is-losing-the-ai-battle/

[49] R. Mayer, C. Mayer, and L. Laich, “The TensorFlow partitioning and
scheduling problem: It’s the critical path!” in Proc. 1st Workshop Distrib.
Infrastruct. Deep Learn., Dec. 2017, pp. 1–6.

[50] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE CVPR,
Jun. 2009, pp. 248–255.

[51] J. Du et al., “Model parallelism optimization for distributed inference via
decoupled CNN structure,” IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 7, pp. 1665–1676, Jul. 2021.

[52] S. Mirjalili, “Genetic algorithm,” in Evolutionary Algorithms and Neural
Networks. Cham, Switzerland: Springer, 2019, pp. 43–55.

[53] K. V. Price, “Differential evolution,” in Handbook of Optimization.
Berlin, Germany: Springer, 2013, pp. 187–214.

[54] Z. Li, Y. Zhang, and Y. Liu, “Towards a full-stack devops environment
(platform-as-a-service) for cloud-hosted applications,” Tsinghua Sci.
Technol., vol. 22, no. 1, pp. 1–9, Feb. 2017.

[55] G. Jung, T. Mukherjee, S. Kunde, H. Kim, N. Sharma, and F. Goetz,
“CloudAdvisor: A recommendation-as-a-service platform for cloud con-
figuration and pricing,” in Proc. IEEE 9th World Congr. Services,
Jun. 2013, pp. 456–463.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 20,2024 at 16:14:09 UTC from IEEE Xplore. Restrictions apply.

https://dx-doi-org-s.qh.yitlink.com:8444/10.1145/3570361.3613259

LI et al.: AUTOMATING CLOUD DEPLOYMENT FOR REAL-TIME ONLINE FOUNDATION MODEL INFERENCE 1523

[56] J. Bergstra, D. Yamins, and D. Cox, “Hyperopt: A Python library for
optimizing the hyperparameters of machine learning algorithms,” in
Proc. Python Sci. Conf., Jan. 2013, pp. 13–20.

[57] C.-J. Hsu, V. Nair, V. W. Freeh, and T. Menzies, “Low-level aug-
mented Bayesian optimization for finding the best cloud VM,” 2017,
arXiv:1712.10081.

[58] U. Picchini and J. L. Forman, “Accelerating inference for diffusions
observed with measurement error and large sample sizes using approx-
imate Bayesian computation,” J. Stat. Comput. Simul., vol. 86, no. 1,
pp. 195–213, Jan. 2016.

[59] P. Gao, L. Yu, Y. Wu, and J. Li, “Low latency RNN inference with
cellular batching,” in Proc. 13th EuroSys Conf., Apr. 2018, pp. 1–15.

[60] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, “Accelerating CNN
inference on FPGAs: A survey,” 2018, arXiv:1806.01683.

[61] C. Unger et al., “Unity: Accelerating DNN training through joint
optimization of algebraic transformations and parallelization,” in Proc.
USENIX OSDI, 2022, pp. 267–284.

[62] L. Zheng et al., “Alpa: Automating inter- and intra-operator parallelism
for distributed deep learning,” 2022, arXiv:2201.12023.

[63] H. Lan, L. Chen, and B. Li, “Accelerated device placement optimization
with contrastive learning,” in Proc. 50th Int. Conf. Parallel Process.,
Aug. 2021, pp. 1–10.

[64] L. Wang, Z. Yu, D. Yang, T. Ku, B. Guo, and H. Ma, “Collaborative
mobile crowdsensing in opportunistic D2D networks: A graph-based
approach,” ACM Trans. Sensor Netw., vol. 15, no. 3, pp. 1–30,
Aug. 2019.

[65] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Syst. Tech. J., vol. 49, no. 2, pp. 291–307,
Feb. 1970.

[66] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[67] C. Fiduccia and R. Mattheyses, “A linear-time heuristic for improving
network partitions,” in Proc. 19th Design Automat. Conf., Jun. 1982,
pp. 175–181.

[68] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon,
“Optimization by simulated annealing: An experimental evaluation;
Part I—Graph partitioning,” Oper. Res., vol. 37, no. 6, pp. 865–892,
Dec. 1989.

[69] L. Hagen and A. B. Kahng, “New spectral methods for ratio cut
partitioning and clustering,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 11, no. 9, pp. 1074–1085, Sep. 1992.

Yang Li received the B.S. and M.Eng. degrees
from the School of Software, Tsinghua University,
Beijing, China, in 2018 and 2021, respectively,
where he is currently pursuing the Ph.D. degree.
He has published several papers in recognized
conferences, such as SIGCOMM, MobiSys, and
INFOCOM. His current research interests include
cloud computing, big data analysis, network mea-
surement, and machine learning. He won the Best
Student Paper Award from SIGCOMM in 2021.

Zhenhua Li (Senior Member, IEEE) received the
B.Sc. and M.Sc. degrees in computer science and
technology from Nanjing University in 2005 and
2008, respectively, and the Ph.D. degree in computer
science and technology from Peking University in
2013. He is currently a Tenured Associate Professor
with the School of Software, Tsinghua University.
His current research interests include network mea-
surement, mobile networking/emulation, and cloud
computing/storage. He is a Senior Member of ACM.

Zhenhua Han received the B.Eng. degree in
electronic and information engineering from the
University of Electronic Science and Technology of
China in 2014 and the Ph.D. degree in computer
science from The University of Hong Kong in 2020.
He is currently a Senior Researcher with Microsoft
Research Asia. His current research interests include
cloud computing, cluster scheduling, and machine
learning systems.

Quanlu Zhang received the B.Sc. degree in com-
puter science and technology from the Harbin
Institute of Technology in 2012 and the Ph.D. degree
in computer science and technology from Peking
University in 2017. He is currently a Principal
Researcher with Microsoft Research. His current
research interests include AutoML systems, deep
learning compilers, distributed execution of deep
learning models, resource management, and the job
scheduling of GPU clusters.

Xiaobo Ma (Member, IEEE) received the Ph.D.
degree in control science and engineering from Xi’an
Jiaotong University, Xi’an, China, in 2014. He was a
Postdoctoral Research Fellow with The Hong Kong
Polytechnic University, Hong Kong, in 2015. He is
currently a Professor with the MOE Key Labora-
tory for Intelligent Networks and Network Security,
Faculty of Electronic and Information Engineering,
Xi’an Jiaotong University. His current research inter-
ests include Internet measurement and cybersecurity.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 20,2024 at 16:14:09 UTC from IEEE Xplore. Restrictions apply.

