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Abstract—With recent advances on cellular technologies push-
ing the boundary of cellular performance, cellular reliability
has become a key concern of their adoption and deploy-
ment. To fully understand cellular reliability, we work with a
major Android phone vendor, Xiaomi, to conduct a long-term
(2020-2024) and large-scale (involving 123M users) measure-
ment study in China, with coarse-grained general statistics and
fine-grained sampling diagnostics. Our measurement reveals con-
trasting evolution trends of cellular failures in different stages of
the data connection: in the past five years, failures after connec-
tion establishment decrease remarkably (by 29%), while failures
during connection setup exhibit a sharp increase (by 38%).
Our analysis illustrates that the contrast stems from the joint
impact of multiple stakeholders, including ISPs’ increasing
deployment of 5G base stations, 5G infrastructure upgrade from
NSA (Non-Standalone) to SA (Standalone) mode, software defects
coming from Android’s adaptation to new cellular technologies,
and so forth. Our work provides actionable insights for improving
cellular reliability at scale. More importantly, we have built on
our insights to develop enhancements that effectively address
cellular reliability issues with remarkable real-world impact—our
optimizations have reduced 38% cellular connection failures for
5G phones and 31% failure recovery time across all phones.

Index Terms—Cellular network, 5G, reliability, measurement,
android, cellular connection management.

I. INTRODUCTION

ELLULAR technologies have been the keystone of

mobile systems and applications that empower our daily
lives, all the way from wireless telephony and mobile Internet,
to emerging applications such as ultra high-definition (UHD)
video streaming and AR/VR [1]. The rise of 5G technologies
has started to realize even higher-bandwidth and lower-latency
cellular networks, driving the grand vision of Al, IoT, and self-
driving vehicles [2]. Specifically, 5G cellular networks support
up to 10 Gbps bandwidth (100x faster than 4G), 1 ms latency
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(cf. 30-50 ms for 4G), and connection density of 10002 devices
per square kilometer (100x more than 4G) [3].

However, the performance of cellular network technologies
and the availability of cellular network services depend cru-
cially on reliable connections, making cellular reliability a
critical concern. From a mobile device’s perspective, cellular
data connections can fail mostly in the following three ways
(we use Android terminologies throughout the paper):

e Data_Setup_Error [4] ': The mobile device can receive
signals from a nearby base station (BS) but cannot
establish a data connection with the BS.

e Out_of_Service [5]: The data connection has been estab-
lished, but the mobile device cannot receive cellular data.

e Data_Stall [6]: The mobile device can receive cellular
data, but the data connection abnormally stalls (for longer
than one minute as suggested in Android).

Measurement. To fully understand cellular reliability in
the wild, we collaborate with a major Android phone ven-
dor, Xiaomi Co. LTD, which serves hundreds of millions
of mobile users in China, to conduct a large-scale, in-depth
study from the device perspective. We build a continuous
monitoring infrastructure on top of a customized Android
system called CrowdEye, which records system-level traces
(without requiring root privileges) once suspicious cellular
data connection failure events (abbreviated as cellular failures)
occur. To extract true failure events and collect diagnostic
information, we instrument relevant system services to record
detailed device/network state information and filter out false
positives.

We invited all users of Xiaomi to participate in the
study by installing CrowdEye on their phones, and finally
123M user devices opted in and shared data with us
for a total of 16 months comprising two separate peri-
ods: 01/01/2020-08/30/2020 and 10/01/2023-06/30/2024. The
dataset involves 70 different models of Android phones,
3 mobile ISPs (referred to as ISP-A: China Mobile, ISP-B:
China Telecom, and ISP-C: China Unicom), and 8.1M BSes.
All the data were collected under informed user consent and
a proper IRB.

Analysis. Combining the above fine-grained dataset with
Xiaomi’s coarse-grained dataset collected from its users during
2020-2024, we have several important observations. Partic-
ularly, over the past five years, despite substantial advances
on cellular technologies, the severity of cellular reliability
problems has still worsened on the whole: the prevalence (the

IStrictly speaking, some Data_Setup_Error events defined in Android are
not true failures since they occur rationally due to BS overloading. Such false
positives will be carefully removed in our study.
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fraction of devices that experience at least one cellular failure)
of cellular failures grows by 39% (23% — 32%) and the
frequency (the average number of cellular failures experienced
per phone) grows by 3% (33 — 34). To demystify the
counter-intuitive observation, we delve deep into the variations
of cellular failures in different stages of the data connection.

Encouragingly, cellular failures (i.e., Out_of_Service and
Data_Stall) after connection establishment decrease by 29.4%,
with a remarkable drop on 5G phones by 66.0%. This is
largely due to China’s ISPs’ enormous capital and technical
investments in 5G infrastructure in recent years, such as
increasing the number of 5G BSes (by 317%) to improve
signal coverage, and deploying the Massive MIMO technique
for indoor scenarios to reduce signal interference [7].

Disappointingly, cellular failures (i.e., Data_Setup_Error)
during connection setup increase by 37.5%, with an astonish-
ing rise (by 200%) on 5G phones. This is primarily because
the 4G/5G dual connectivity mechanism [8] is now rarely
needed, as most 5G BSes have transitioned from NSA (Non-
Standalone) to SA (Standalone) mode. User devices now need
to establish new connections when switching between 4G and
5G; consequently, more frequent connection setups lead to a
higher likelihood of Data_Setup_Error failures.

In a nutshell, our results indicate that cellular failures are
mainly caused by software defects rather than inexpensive
hardware. From the viewpoint of user devices, the soft-
ware implementation that blindly prioritizes 5G connection
since Android 10 greatly impairs the stability of cellular
connections. Besides, the three-stage progressive mechanism
for Data_Stall recovery since Android 7 turns out to be
rather inefficient [8]. In addition, the premature failure judg-
ment in Android 14 leads to considerable overdue cellular
reconnections.’

From the viewpoint of ISPs, cellular failures occur more
prevalently (31%) on ISP-B users than on ISP-A (24%) users
and ISP-C users (25%) due to the inferior signal coverage of
ISP-B. While both the number and overall signal coverage of
3G BSes are smaller than those of 2G, 4G or 5G BSes, the
prevalence of failures on 3G BSes is lower than that on 2G,
4G or 5G BSes. This can be ascribed to the fact that 3G access
is usually not preferred when 4G/5G access is available and its
signal coverage is worse than that of 2G when 4G/5G access
is unavailable, resulting in less resource contention.

From the viewpoint of BSes, common wisdom suggests a
positive correlation between cellular reliability and received
signal strength (RSS). However, our measurement shows the
opposite when there is excellent (level 5) RSS—failures
are more likely to happen in this case (24%) than when
there is weaker (level 1 to 4) RSS (11%—21%). We clear
up the mystery—most excellent-RSS failures come from
densely-deployed BSes around public transport hubs; while
such BSes offer excellent RSS, they increase the control-
channel overhead of mobility management [9], [10], causing
frequent failures tagged with EMM_ACCESS_BARRED,
INVALID_EMM_STATE, etc. [11].

2If an app requests to start a network session (when the cellular connection
is not set up) and then quickly cancels the request, the connection will be
terminated during its establishment. Unfortunately, Android 14 misregards all
the cellular connections terminated during establishments (dubbed aborted
connections) as Data_Setup_Error failures. It will no longer perform recon-
nections even if new network sessions require them, as it assumes that retrying
aborted connections would still be unsuccessful, which is often the case but
not always. In the misjudged case, the undesirable situation will persist until
a manual reset of the connection, leading to a very long recovery time.
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Finally, we are concerned with the failure recovery
time, which mostly comes from Data_Stall in 2020 but
Data_Setup_Error in 2023/2024. In 2020, a Data_Stall fail-
ure lasts for as long as 2.9 minutes on average, due to
the aforementioned inefficient three-stage Data_Stall recovery
mechanism. Around four years later, Data_Setup_Error fail-
ures account for the most of the recovery time and take an
average of 2.7 minutes to fix; particularly, the recovery time
in 18.4% cases exceeds 3 minutes, and the majority (>60%)
of these cases are attributed to the aforementioned premature
failure judgment in Android 14.

Enhancements. In our preliminary work [8], we propose
two-fold optimizations by 1) devising a stability-compatible
RAT transition mechanism to enhance cellular reliability
and 2) leveraging the TIMP (time-inhomogeneous Markov
process [12]) model to accelerate the Data_Stall recov-
ery. Real-world evaluation demonstrates that the former
reduces 40% cellular failures for 5G phones and the latter
decreases 38% Data_Stall recovery time for all phones.

In this work, we make further enhancements by identifying
app-induced aborted connections and speeding up their recov-
ery with cross-layer context tracing and meticulous failure
judgment. During the establishment of a cellular connection, if
no network session is found to require the connection, we trace
backwards to the network session that triggered the connection
establishment. If the setup request for this network session is
actively canceled by its initiator, we must not consider the
connection as a failure; instead, we let it terminate normally. In
this way, the cellular connection can be timely re-established
when a new network session requires it, largely saving the
recovery time of Data_Setup_Error failures.

Since the release of the patched CrowdEye system with
the meticulous failure judgment (adopted by 16M opt-in
users in late Jul. 2024), we have successfully reduced
Data_Setup_Error failures by 14% and shortened their recov-
ery time by 56% during Aug.—Sep. 2024. We have also
reported the design defect of Android 14 to its official devel-
opment team in Google, who has confirmed the issue and
promised to fix it in the upcoming release [13]. Overall, the
three enhancements jointly reduce 38% cellular failures for 5G
phones and save 31% failure recovery time across all phones.

Code Release. All the diagnosis and fixing code for cellular
failures involved in the study is publicly available at https://
CellReliabilityEvo.github.io.

II. STUDY METHODOLOGY

We conducted a large-scale measurement study on cellular
failures based on continuously monitoring 122M opt-in user
devices over a total of 16 months comprising two separate peri-
ods (01/01/2020-08/30/2020 and 10/01/2023-06/30/2024).
The study is enabled by CrowdEye, a customized Android
system that provides lightweight, privacy-preserving tracing
and analysis beyond the capability of the vanilla Android
system.

A. Limitations of Vanilla Android

Cellular connection management exists as a system service
in Android, where the life cycle of a cellular data connection
is modeled by a state machine [14] as shown in Figure 1:
a total of five states are used to represent different stages
of a cellular connection, including Disconnected, Connecting,
Retrying, Connected, and Disconnecting. As one state changes
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Fig. 1. The state machine that models the life cycle of a cellular data
connection in Android.

to another, Android provides quite a few facilities to monitor
various problems during the process, most of which are related
to our targeted cellular failures.

First of all, if a user device fails to establish a data con-
nection to a nearby base station (BS), a Data_Setup_Error [4]
failure event will be reported to relevant system services (but
not to user-space apps); then, a retry attempt will be initiated,
trying to establish the data connection once again. Here the
failure may occur at the physical layer (e.g., radio signal
loss), the data link or MAC layer (e.g., device authentication
failure), and/or the network layer (e.g., IP address allocation
failure). Upon any failure, an error code will be generated by
the underlying radio interface, based on either the received
responses to the issued connection-setup negotiation requests
(if any) or the return values of the modem commands executed
by the underlying radio interface.

Further, if the data connection is successfully established but
the user device still cannot access the cellular network, i.e., the
user device cannot send/receive data to/from outside, Android
will mark its current service state as Out_of Service [5].
Worse still, even if data can be sent to or received from outside,
sometimes the data connection can abnormally stall for a long
time, incurring annoying user experience. This phenomenon is
termed as Data_Stall [6] in Android. In detail, when there have
been over 10 outbound TCP segments but not a single inbound
TCP segment during the last minute (the statistics are made by
the Linux kernel in its network protocol stack), a Data_Stall
failure is reported to both relevant system services and user-
space apps. In addition, there are other types of failures we
do not elaborate here but will mention when necessary in the
remaining parts.

For all the abovementioned failure events, Android currently
provides basic notification interfaces with which the relevant
system services can register themselves as the event listeners.
Nevertheless, only a part of the interfaces (including the
Data_Stall notifier and Out_of_Service checker) are exposed
to user-space apps, and some interfaces are inaccessible even
with root privileges. Therefore, we are unable to capture all the
concerned failure events without modifications at the system
level. To make the matter worse, some of the abovementioned
failure events are in fact not true failures. For example, a
data connection setup request may be rejected by a nearby BS
which is currently overloaded; in this case, a Data_Setup_Error
event will be reported but does not imply a true failure. Addi-
tionally, the event-related information reported by Android
is often insufficient for in-depth analysis. In fact, Android
typically only reports the occurrence of a failure event with-
out capturing other important in-situ information, such as
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the desired BS information, received signal strength (RSS),
protocol error code, and network state.

B. Continuous Monitoring Infrastructure

To practically address the above-described multifold chal-
lenges, we customize the vanilla Android system for con-
tinuously acquiring fine-grained system-level traces upon the
occurrence of suspicious cellular failure events, which are
otherwise impossible to obtain but are crucial to our study
requirements. The resulting system is called CrowdEye, in
which we focus on modifying the Framework-layer programs.
We do not make modifications to the hardware abstract layer
(HAL) or the kernel layer—while HAL/kernel modifications
can help us collect more underlying and detailed data, they can
easily impair the system stability and robustness in practice
(even with careful testing) [15].

At a high level, our modifications are made to realize
three goals: 1) system service instrumentation, 2) concerned
information logging, and 3) failure recovery monitoring.
Specifically, we first instrument the Android system service of
cellular connection management by integrating our developed
monitoring service as its event listener, so that all the occur-
rences of Data_Setup_Error, Out_of_Service, Data_Stall, and
other concerned failure events can be captured in real time.
It is worth noting that when instrumenting the service, we
carefully rule out a variety of false failure events (a.k.a., false
positives), such as connection disruption by incoming voice
calls, service suspension due to insufficient account balance,
and manual disconnection of the network.

Second, we need to record important radio- and BS-related
information upon the occurrence of a cellular failure for in-
depth analysis. Such information includes the current radio
access technology (RAT, e.g., 4G LTE or 5G NR), received
signal strength (RSS), access point names (APNs), and BS
ID that consists of Mobile Country Code (MCC), Mobile
Network Code (MNC), Location Area Code (LAC), and Cell
Identity (CID).? All these information can be accessed via
the APIs provided by the Android TelephonyManager and
ServiceState services. Besides, we record the protocol error
codes for Data_Setup_Error events to further rule out possible
false positives such as rational setup rejection due to BS
overloading. In particular, we have carefully analyzed all the
344 cellular connection-related error codes defined in Android
[11], and recognized tens of error codes that are highly
correlated with false positives as critical auxiliary information.

Further, to deeply understand the root causes of
Data_Setup_FError failures, we meticulously trace the
entire process of data connection establishment by

instrumenting key functions (e.g., DataProfileManager.
getApnSettingForNetworkRequest (),

PhoneInterfaceManager.setDataEnabled (), and
DataNetwork.setupDataCall ()) along the way in
CrowdEye in 2023. In detail, our monitoring service acts
as a centralized listener for these concerned functions,
recording their execution time, parameters, and return
values in real time. When the monitoring service captures a
Data_Setup_Error failure, it integrates these traces with the
aforementioned radio- and BS-related information, forming a
comprehensive failure snapshot. In this way, we can capture
detailed information of the establishment (e.g., function

3For some CDMA BSes, System Identity (SID), Network Identity (NID),
and Base Station Identity (BID) are recorded instead of MNC, LAC, and CID.
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call stacks, state machine transitions, and message handling
results), facilitating the in-depth postmortem analysis.

Third, we note that the existing Data_Stall detection mech-
anism in Android cannot provide an accurate measurement of
a Data_Stall failure’s recovery time, given its fixed detection
time (as long as one minute). According to our observations
(detailed later in § III-A), in most (>80%) cases a Data_Stall
failure lasts for <300 seconds, so the incurred measurement
error is non-trivial relative to the Data_Stall failure’s recovery
time. Also, detection results of this mechanism may contain
false positives for lack of crucial knowledge regarding the
current states of network stack and Internet connectivity.

To address these issues, we build a network-state probing
component in CrowdEye. Once a suspicious Data_Stall failure
is detected, this component checks the states of network stack
and Internet connectivity by simultaneously sending an ICMP
message to the local IP address (127.0.0.1), as well as sending
an ICMP message and a DNS query (for our dedicated test
server’s domain name) to each of the user device’s assigned
DNS server(s). If the ICMP message intended for the local
IP address reaches a timeout (empirically configured as one
second as suggested by the ICMP protocol [16]), we know that
the problem lies at the system side rather than the network side
(hence a false positive case). In practice, such false positives
typically involve erroneous firewall configurations, problem-
atic proxy settings, and modem driver failures. Otherwise, if
all the DNS queries reach a timeout (empirically configured as
five seconds as suggested by the DNS protocol [17]), we know
the problem lies at the network side. However, if timeouts only
occur to the DNS queries but not to the ICMP messages sent
to the DNS servers, we figure out that the problem is induced
by the unavailability of DNS resolution service (also a false
positive case).

The above probing process needs at most five seconds, given
the one-second timeout for the ICMP message deliveries and
five-second timeout for the DNS queries. If all the probing
results are successful, indicating that Data_Stall has been
fixed, we will calculate the total recovery time by adding up
the durations of all the previous probing processes (since the
beginning of this Data_Stall failure); otherwise, we will initiate
a new probing process. Thus, our measurement error is at most
five seconds (< 1 minute). Furthermore, to avoid excessive
network overhead, if a Data_Stall failure lasts for longer than
1200 seconds (in fewer than 10% cases, as illustrated later
in § I1I-A), we will multiplicatively increase the time interval
between probing processes by a factor of two to balance
the incurred error and overhead. Finally, if the time interval
grows to longer than one minute, we will revert to Android’s
original detection mechanism to estimate the recovery time of
Data_Stall failures.

Moreover, we observe that vanilla Android does not record
or provide the recovery times of Data_Setup_Error and
Out_of Service failures. To address this limitation, we obtain
them through lightweight instrumentation of corresponding
state machines. Specifically, for Data_Setup_Error failures,
we track the cellular connection state machine, recording
the timestamp when the failure occurs and when the state
machine first transitions to the active state (i.e., when the
failure recovers). In this way, the recovery time can be deemed
as the time interval between the two timestamps, with a
negligible error (< 1 second) introduced by the recording
process. Similarly, for Out_of_Service failures, we monitor
the cellular service state machine and determine the recovery
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time as the interval between the failure occurrence and the
state machine’s reentry into the In_Service state.

All in all, our modifications to Android involve system-level
information logging (primarily through existing interfaces),
key function tracing, and lightweight network probing activ-
ities. For even a low-end Android phone at the moment,
CrowdEye only incurs negligible CPU utilization (<2%),
memory usage (<40 KB), and storage space (<0.1 MB); the
network usage per month is <0.1 MB. Note that here the
CPU utilization is measured by the portion of additional CPU
overhead induced by our monitoring infrastructure within the
duration of detected failures, rather than during the entire mea-
surement process. As a matter of fact, in daily usages without
cellular failures, our monitoring infrastructure is dormant at the
client side and thus does not incur additional CPU overhead.

On the other hand, we do notice that for a small fraction
(<1%) of user devices, they experience as many as 40,000+
failures (as to a single user) in a month. Even so, the
incurred CPU, memory, and storage overheads are still accept-
able: <8% CPU utilization, <2 MB of memory usage, and
<20 MB of storage space; the network usage per month can
reach 20 MB, so the recorded data are uploaded only when
there is WiFi connectivity.

Finally, the network overhead incurred by our measurement
is fairly low even in a cumulative sense. For all the users that
participated in our study, the aggregate network overhead per
second on the entire cellular networks of the three involved
ISPs was below 0.5 MB, and thus had negligible influence
on the performance, availability, and reliability of the studied
cellular networks.

C. Large-Scale Deployment

With the continuous monitoring infrastructure, in Dec. 2019
and Sep. 2023 we invited all the users of Xiaomi to participate
in our measurement study of cellular reliability by installing
CrowdEye on their phones. Note that the installation is a
lightweight update that will not affect their installed apps,
existing data, and OS version. Eventually, 123,292,648 users
opted in and collected data for us for a total of 16 months
(01/01/2020—08/30/2020 and 10/01/2023—06/30/2024). All
data are compressed and uploaded to our backend server for
centralized analysis.

Ethical Concerns.All analysis tasks in this study comply
with the agreement established between Xiaomi and its users.
The users who participated in the study opted-in as volunteers
with informed consent, the analysis was conducted under a
well-established IRB, and no personally identifiable informa-
tion (e.g., phone number, IMEI, and IMSI) was collected. We
never (and have no way to) link collected information to users’
true identities.

D. Analysis Pipeline

We analyze the collected data through a two-stage process.
First, we conduct a macro-level analysis and calculate key
metrics including prevalence, frequency, and recovery time
for cellular failures. Through longitudinal comparisons, we
uncover changes in failure severity over the past five years
and identify different evolution trends across the three types of
failures. Second, we examine the correlations between multiple
influencing factors and cellular failures from two perspectives.
From the user device perspective, we assess how hardware
configurations and Android versions affect the prevalence
and frequency of distinct types of failures and how these
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TABLE I

HARDWARE CONFIGURATIONS OF 34 PHONE MODELS STUDIED IN 2020,
GENERALLY ORDERED FROM LOW-END TO HIGH-END. THE RIGHT-
MOST 5 COLUMNS CORRESPOND TO THE PHONE’S 5G CAPABILITY
(5G), ANDROID VERSION (VERSION), USER PERCENTAGE
(USERS),FRACTION OF DEVICES THAT EXPERIENCE AT
LEAST 1 CELLULAR FAILURE (PREVALENCE), AND AVG.
NUMBER OF CELLULAR FAILURES EXPERIENCED
PER PHONE (FREQUENCY) DURING OUR
MEASUREMENT, RESPECTIVELY

Model CPU Memory Storage 5G Version  Users  Prevalence  Frequency
1-1 1.8 GHz 2 GB 16 GB - 10.0 2.71% 28% 359
1-2 1.95 GHz 2 GB 16 GB - 9.0 3.02% 13% 238
1-3 2 GHz 2 GB 16 GB - 9.0 7.31% 10% 13.8
1-4 2 GHz 3GB 32GB - 9.0 3.90% 19% 24
1-5 2 GHz 3GB 32GB - 9.0 2.85% 21% 282
1-6 2 GHz 3GB 32 GB - 10.0 433% 4% 53
17 2 GHz 3GB 32GB - 10.0 1.44% 5% 6.4
1-8 2 GHz 3 GB 32GB - 9.0 4.07% 0.15% 23
1-9 2 GHz 3 GB 32GB - 10.0 5.47% 2% 2.6
1-10 2.2 GHz 4GB 32GB - 9.0 5.78% 27% 36.8
1-11 1.8 GHz 4GB 64 GB - 10.0 1.18% 25% 285
1-12 2 GHz 4GB 64 GB - 10.0 1.44% 33% 435
1-13 2.05 GHz 6 GB 64 GB - 10.0 539% 26% 18.7
1-14 2.2 GHz 6 GB 64 GB - 9.0 2.98% 15% 17.9
1-15 22 GHz 4 GB 128 GB - 10.0 3.98% 25% 26.7
1-16 22 GHz 4 GB 128 GB - 10.0 3.02% 19% 28.0
1-17 2.2 GHz 6 GB 64 GB - 10.0 1.09% 28% 484
1-18 2.2 GHz 6 GB 64 GB - 10.0 0.26% 13% 388
1-19 22 GHz 6 GB 64 GB - 10.0 131% 24% 448
1-20 22 GHz 6 GB 64 GB - 10.0 057% 21% 330
1-21 2.2 GHz 6 GB 64 GB - 10.0 2.80% 36% 46.6
1-22 22 GHz 6 GB 128 GB - 9.0 0.44% 38% 61.1
1-23 2.4 GHz 6 GB 64 GB YES 10.0 0.84% 44% 49.6
1-24 2.4 GHz 6 GB 128 GB YES 10.0 3.25% 37% 38.0
1-25 245 GHz 6 GB 64 GB - 9.0 4.99% 14% 19.6
1-26 245 GHz 6 GB 64 GB - 9.0 2.15% 17% 2.6
1-27 2.8 GHz 6 GB 64 GB - 10.0 1.84% 229 54.2
1-28 2.8 GHz 6 GB 64 GB - 10.0 7.14% 28% 58.1
1-29 2.8 GHz 6 GB 64 GB - 10.0 1.31% 30% 65.1
1-30 2.8 GHz 6 GB 128 GB - 10.0 1.01% 30% 90.2
1-31 2.84 GHz 6 GB 64 GB - 10.0 1.88% 28% 61.7
1-32 2.84 GHz 6 GB 64 GB - 10.0 3.63% 29% 57.8
1-33 2.84 GHz 8 GB 128 GB YES 10.0 478% 32% 70.9
1-34 2.84 GHz 8 GB 256 GB YES 10.0 1.84% 25% 79.3

effects evolve over time. We also explore the Android’s failure
recovery mechanisms to understand recovery time variations.
From the ISP and BS perspective, we delve deep into how
geographic locations, ISPs, radio access technologies, and
signal strengths impact cellular failures. We further reveal
the underlying causes of these impacts by investigating ISP
infrastructure and BS deployment.

III. MEASUREMENT RESULTS

In this section, we first present the general characteristics of
our collected measurement data (§ III-A). Then, to systemati-
cally describe cellular failures and their underlying causes in
a more readable manner, we present our data analysis results
from the viewpoints of user decives (§ III-B) and ISPs/BSes
(§ II-C), respectively.

A. General Statistics

With the crowdsourcing help from 123,292,648 CrowdEye
user devices with 70 different phone models (34 models
involved in 01/01/2020-08/30/2020 as listed in Table I and
36 models involved in 10/01/2023-06/30/2024 as listed in
Table II), we record the system-level traces with regard
to 4,104,056,765 cellular failures, involving 32,847,235 user
devices, 3 mobile ISPs and 8,130,797 base stations. To the best
of our knowledge, this is so far the largest dataset regarding
cellular failures in the wild.

First of all, we are concerned with the prevalence and
frequency of cellular failures. Our measurement results reveal
that despite substantial advances in cellular technologies over
the past five years, the severity of cellular reliability prob-
lems has worsened overall. According to the coarse-grained
dataset collected during 2020-2024, both the prevalence and
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TABLE I

HARDWARE CONFIGURATIONS AND GENERAL STATISTICS OF OUR
STUDIED 36 PHONE MODELS IN 2023/2024, GENERALLY
ORDERED FROM LOW-END TO HIGH-END. THE
COLUMNS ARE THE SAME WITH TABLE I

Model CPU Memory Storage 5G Version Users Prevalence Frequency
2-1 2 GHz 4 GB 64 GB - 11.0 3.78% 12% 43
2-2 2 GHz 4 GB 64 GB - 11.0 2.19% 11% 4.1
23 2 GHz 4 GB 64 GB - 12.0 1.01% 10% 4.2
2-4 2 GHz 4 GB 64 GB - 14.0 1.65% 16% 13.5
2-5 2 GHz 4GB 128 GB - 12.0 2.05% 7% 2.5
2-6 2.2 GHz 4 GB 128 GB YES 13.0 1.40% 21% 9.9
2-7 2 GHz 6 GB 128 GB YES 14.0 2.82% 33% 34.0
2-8 2.2 GHz 6 GB 128 GB YES 12.0 2.22% 29% 17.3
2-9 2.2 GHz 6 GB 128 GB YES 14.0 2.13% 44% 49.3
2-10 2.2 GHz 6 GB 128 GB YES 14.0 1.26% 30% 455
2-11 2.3 GHz 6 GB 128 GB YES 13.0 4.25% 23% 9.9
2-12 2.4 GHz 6 GB 128 GB YES 13.0 6.52% 22% 26.2
2-13 2.4 GHz 8 GB 128 GB YES 12.0 1.01% 25% 15.7
2-14 2.4 GHz 8 GB 128 GB YES 13.0 1.71% 29% 13.0
2-15 2.5 GHz 8 GB 128 GB YES 13.0 3.67% 32% 21.6
2-16 2.4 GHz 8 GB 256 GB YES 13.0 2.96% 15% 15.8
2-17 2.4 GHz 12 GB 256 GB YES 14.0 2.14% 40% 55.6
2-18 2.6 GHz 12 GB 256 GB YES 14.0 2.03% 31% 44.0
2-19 2.84 GHz 8 GB 256 GB YES 13.0 1.56% 30% 41.4
2-20 2.85 GHz 8 GB 256 GB YES 14.0 3.34% 26% 25.8
2-21 291 GHz 12 GB 256 GB YES 14.0 4.26% 44% 36.3
2-22 3.2 GHz 8 GB 256 GB YES 14.0 5.57% 30% 26.4
2-23 3.2 GHz 8 GB 256 GB YES 13.0 2.64% 31% 275
2-24 3 GHz 12 GB 128 GB YES 13.0 1.28% 26% 19.3
2-25 2.85 GHz 12 GB 256 GB YES 14.0 3.02% 27% 332
2-26 2.8 GHz 12 GB 512 GB YES 14.0 1.14% 39% 74.1
2-27 3.0 GHz 12 GB 256 GB YES 14.0 4.56% 41% 40.2
2-28 3.05 GHz 12 GB 256 GB YES 14.0 0.98% 31% 37.8
2-29 3.1 GHz 12 GB 256 GB YES 14.0 1.62% 33% 65.0
2-30 12 GB 256 GB YES 14.0 4.23% 48% 51.0
2-31 12 GB 512 GB YES 14.0 0.98% 38% 70.4
2-32 12 GB 512 GB YES 14.0 1.52% 39% 76.0
2-33 12 GB 512 GB YES 14.0 1.51% 4% 63.6
2-34 16 GB 512 GB YES 14.0 4.23% 50% 51.4
2-35 16 GB 512 GB YES 14.0 4.04% 55% 73.2
2-36 16 GB 1 TB YES 14.0 1.95% 55% 85.0
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Fig. 2. Prevalence of cellular failures over time.
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Fig. 3. Frequency of cellular failures over time.

frequency exhibit a consistent upward trend over the five-year
period, as illustrated in Figure 2 and Figure 3. In detail, the
prevalence of cellular failures grows by 39% (23% — 32%)
and the frequency grows by 3% (33 — 34).

To gain deeper insights, we further conduct a more detailed
analysis based on the fine-grained dataset collected in 2020
and 2023/2024. Regarding results in 2020, as shown in Table I
and Figure 4, on different models of phones the prevalence
varies from 0.15% to 45% and averages at 23%. More notably,
as many as 33 cellular failures occur to a phone on average
during our 8-month measurement (see Figure 5), and the
average number of cellular failures happening to a specific
model varies from 2.3 to 90.2 (see Table I). As for the results
in 2023/2024, on different models the prevalence of cellular
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failures ranges from 7% to 55%, with an average of 32% (see
Table II and Figure 6), and the frequency ranges from 2.5 to
85.0, with an average of 34 (see Table II and Figure 7).
Specifically, we observe distinct evolution trends of different
types of cellular failures. Among the 4.10 billion cellular
failures, the vast majority (>99%) include Data_Setup_Error,
Out_of_Service, and Data_Stall events. The remainder (<1%)
are mainly related to the traditional short message and
voice call services that are less frequently used today
(e.g., short message sending failure tagged by Android as
RIL_SMS_SEND_FAIL_RETRY [18]), whose functions and
enabling techniques have been stable for nearly 20 years.
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As shown in Figure 3 and Figure 5, an average of
16 Data_Setup_Error, 14 Data_Stall, and 3 Out_of_Service
events occur to a single phone in 2020. After four years, as
shown in Figure 3 and Figure 7, the frequency of Data_Stall
events declines to 9, and the frequency of Out_of_Service
events remains at 3, while the frequency of Data_Setup_Error
events increases to 22. Meanwhile, as shown in Figure 2, the
prevalence of Data_Stall and Out_of_Service events drops by
11% (19% — 17%) and 40% (5% — 3%), respectively,
whereas the prevalence of Data_Setup_Error events increases
by 60% (15% — 24%). We will demystify the reasons for
the distinct results in § III-B.

Apart from prevalence and frequency, we are also con-
cerned with the failure recovery time, which mostly comes
from Data_Stall in 2020 but Data_Setup_Error in 2023/2024.
In 2020, as shown in Figure 8, a Data_Stall failure lasts
for as long as 176 seconds (=2.9 minutes) on average.
In 2023/2024, as shown in Figure 9, Data_Setup_FError fail-
ures take an average of 162 seconds (=2.7 minutes) to fix.
We will explain the reasons for the unsatisfactory recovery
time in both cases in § III-B. Moreover, we notice that the
maximum recovery time for Data_Stall failures can reach
70,860 seconds (=19.7 hours), and for Data_Setup_Error
failures it can reach 20,452 seconds (=5.68 hours). Closer
examination reveals that such failures, which take a long time
to recover, typically occur in remote regions such as mountain
and offshore areas, where the BSes have been long neglected
and in disrepair.

B. User Device Landscape

In this part, we go deeper into the internals of user devices
with respect to their hardware, software and OS components
that may pose impact on cellular failures, especially those with
regard to the emerging technologies.

Hardware Configuration. Intuitively, using higher-end
cell phones should help to mitigate cellular failures as they
usually imply the adoption of more reliable and/or powerful
hardware components. However, our measurement results
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Fig. 12. Prevalence of cellular failures on models w/ and w/o the 5G module
in 2020 and 2023/2024.

generally indicate the opposite: as shown in
Figure 4, 6, 10, and 11, both the prevalence and frequency
of cellular failures tend to increase with better hardware
configurations. To demystify this, we examine the correlation
between each feature (in Table I and Table II) and the
prevalence/frequency of cellular failures, finding that two
features, ie., 5G capability and Android version, have
significant influence on the occurrence of cellular failures,
while further analysis reveals that the similar correlations
across two periods (in 2020 and in 2023/2024) stem from
very different underlying reasons.

Since 5G just sprang up in 2020, only four out of the
34 phone models are equipped with 5G modems, in which
Models 23 and 24 have typical hardware configurations at the
moment while Models 33 and 34 have the best. As illustrated
in Figure 12 and Figure 13, both the prevalence and frequency
of cellular failures on 5G phones are higher than those on
non-5G phones. This suggests that the emerging 5G commu-
nication modules have negative impact on the reliability of
cellular connections, probably due to the high workload they
inflict on the network stack and system kernel of Android for
processing large volumes of inbound/outbound data in short
time, as well as their relatively immature development stage
at the moment.
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Four years later, 5G phones have dominated the mar-
ket (31 of 36 phone models). Despite the evolution of 5G
technologies, cellular failures still happen more prevalently
and frequently on 5G phones than on non-5G phones (see
Figure 12 and Figure 13). We uncover the root cause as a
combination of the advancements in 4G and the potential
side effects of 5G development. Specifically, we observe that
improvements in 4G infrastructure along with the decrease
in 4G users significantly alleviate resource contention and
improve spectral efficiency, leading to a remarkable decrease
in the prevalence and frequency of failures on non-5G phones.

In particular, the number of 4G base stations (BSes)
has increased by 24% (from 5.7M to 7.1M) between 2020
and 2024. Additionally, ISPs have adopted multiple LTE-
Advanced technologies during the past few years. For instance,
carrier aggregation [19] enables devices to utilize multiple
frequency bands simultaneously, thereby mitigating network
congestion; enhanced inter-cell interference coordination [20]
reduces interference between macro and small cells, partic-
ularly improving cellular reliability in dense urban areas;
and coordinated multi-point [21] allows multiple BSes to
jointly transmit data, minimizing cellular failures during BS
handovers.

More notably, over the past five years, the three types
of failures on 5G phones exhibit different statistical trends:
the severity of Out_of Service and Data_Stall events on
5G phones has largely eased, closely resembling the sit-
uation of non-5G phones in 2020, while the situation of
Data_Setup_Error events has dramatically deteriorated. We
attribute the former encouraging fact to the substantial invest-
ments made by China’s ISPs in 5G infrastructure, including
an enormous increase in the number of 5G BSes (by 317%)
to improve signal coverage, the optimization of the Massive
MIMO technology for indoor environments to mitigate signal
interference [7], etc..

Disappointingly, advances in 5G technologies have an
unexpected negative impact on Data_Setup_Error events, far
outweighing the positive impact observed for Data_Stall and
Out_of_Service events. As most 5G BSes transition from NSA
(Non-Standalone) mode to SA (Standalone) mode, the 4G/5G
dual connectivity mechanism is rarely used now, requiring
user devices to establish new connections switching between
4G and 5G. Additionally, phones experience more frequent
handovers when connected to 5G than 4G, due to the smaller
coverage area of 5G BSes. With the large-scale adoption of
5G in 2023/2024, devices are now staying on 5G networks
for a much longer time than in 2020. Consequently, the more
frequent connection setups and BS handovers lead to a higher
probability of encountering Data_Setup_Error failures.
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Android Version. The Android versions of the studied
70 phone models include Android 9-14, released between
Aug. 2018 and Oct. 2023. In detail, the 34 models involved in
the former eight months use Android 9/10, and the 36 models
involved in the latter eight months use Android 11-14.

In our preliminary work [8], we note that as Android
evolves from version 9 to 10, a number of new functions
and performance improvements have been implemented [22].
Although these updates are supposed to benefit users, we
unexpectedly find that both the prevalence and frequency of
cellular failures on Android 10 phones are higher than those on
Android 9 phones, as demonstrated in Figure 14 and Figure 15.
We attribute this primarily to the better stability and robustness
of Android 9, as Android 10 was still undergoing constant fixes
and patches during our measurement.*

Adapting to the emerging 5G techniques, Android 10 added
considerable dedicated services, network functions, and pro-
gramming APIs [23]. While these novelties can enable various
high-demanding applications such as UHD video streaming
and AR/VR [l1], they inevitably bring defects, risks, and
vulnerabilities to the cellular connection management modules
of Android from the perspective of software engineering.

In particular, we note that in the RAT (radio access technol-
ogy) selection policy upgraded in Android 10, 5G is blindly
preferred to the other RATSs, probably aiming to maximize the
potential benefit of 5G, especially its remarkably higher peak

4Given that 5G phone models can only run Android 10 (since Android 9
does not support 5G) in 2020 and only Android 12 runs on both 5G and
non-5G phones among the involved phones (due to the wide adoption of 5G)
in 2023/2024, to make an independent analysis and a fair comparison, when
comparing the prevalence and frequency of cellular failures on 5G and non-5G
models earlier in this section, we should only select models running Android
10 and 12. Similarly, for a fair comparison among Android versions regarding
their impacts on cellular failures, we should only compare the phone models
running Android 9 with the non-5G models running Android 10 and 12, or
compare among 5G models running Android 10, 12, 13, and 14. Since the
corresponding fair-comparison results are similar to those shown in Figure 12,
Figure 13, Figure 14, and Figure 15, we choose not to plot additional figures
to demonstrate them.
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bandwidth. Nevertheless, this policy could incur severe cellular
failures. For example, when a user device can establish either a
5G connection with low received signal strength (RSS) or a 4G
connection with high RSS, the preferred usage of 5G might
bring rather unstable cellular performance and even cellular
failures, although the co-existing 4G connection might have
better cellular performance. Worse still, this example is not
a rare case but happens frequently in our everyday life, thus
leading to a great number of cellular failures on 5G phones.

Similar to the situation in 2020, failures occur much less
prevalently and frequently on phones running lower Android
versions (i.e., Android 11/12) in 2023/2024, as more than
three years have passed since their official release, allowing
them to become highly stable. Still, higher Android versions
(i.e., Android 13/14) exacerbate cellular failure issues, and
Data_Setup_Error failures worsen the most. In addition to
the lack of robustness of these versions, we uncover that
Android 14 inadvertently introduces a new design defect
when updating the cellular connection management, leading
to considerable misjudged Data_Setup_Error failures. We will
explain this later in this section.

Data_Stall Recovery. As mentioned in § III-A, Data_Stall
failures account for the most of the recovery time in 2020
and last for as long as 2.9 minutes on average, thus posing
broad and disruptive impact on user experiences. Recall that
in Android, when there have been over 10 outbound TCP
segments but not a single inbound TCP segment during the last
minute, a Data_Stall event happens [6]. To tackle the problem,
when a Data_Stall event is detected, Android launches the
three-stage progressive mechanism that sequentially tries light
(cleaning up and restarting the current connection), moder-
ate (re-registering into the network), and heavy (restarting
the radio component) recovery techniques. Before carrying
out each of the above operations, Android would wait for
one minute to watch whether the problem has already been
fixed.

In practice, we observe that this mechanism is quite
effective— once executed, even the first-stage, lightweight
operation can fix the problem in 75% cases. Nevertheless, our
measurement shows that this mechanism is overly conservative
and thus rather time-consuming. In fact, for the majority of
Data_Stall events, the user device can automatically recover
them in less time, as illustrated in Figure 8. For example, 60%
Data_Stall failures are automatically fixed in just 10 seconds.
Also, we notice that the victim user would manually reset
the data connection within ~30 seconds (according to our
sampling user survey). Therefore, the one-minute “probation”
adopted by Android is unnecessarily long, rendering the recov-
ery mechanism to be neither efficient nor user-friendly.

Data_Setup_Error Recovery. In 2023/2024, the failure
recovery time mostly comes from Data_Setup_Error,
due to the aforementioned design defect introduced in
Android 14. As illustrated in Figure 9, the average
recovery time of Data_Setup_Error failures reaches
162 seconds (=2.7 minutes), with 18.4% of cases taking
over 180 seconds to recover, significantly affecting user
experiences. A closer analysis reveals that the majority
(>60%) of these prolonged reconnections (>180s) happen
when an app requests to start a network session (with no
cellular connection established) and then quickly cancels the
request, causing the connection to terminate during its setup.
This is mainly due to rapid changes in app behavior, such
as being opened and then swiftly closed, or enabling cellular
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data acceleration while the phone is connected to WiFi and
soon disabling it, which are typically caused by shifts in user
actions.

Unfortunately, in Android 14, the system misregards all
cellular connections terminated during their setups (named
aborted connections) as Data_Setup_Error failures, and will
no longer perform reconnections (NO_RETRY_FAILURE)
even if new network sessions require them. This design is
primarily aimed at conserving resources and reducing power
consumption, as the system assumes that retrying aborted
connections would still fail, which is often the case (e.g.,
no available gateway for the APN) but not always (e.g.,
the aforementioned unusual app behavior). The premature
failure judgment introduces a significant number of misjudged
Data_Setup_Error failures, worsening cellular reliability issues
on phones running Android 14 as mentioned before. It also
leads to considerable overdue cellular reconnections, as in the
false positive NO_RETRY_FAILURE case, the undesirable
situation will persist until the user manually resets the cellular
connection, leading to the very long recovery time.

C. ISP and Base Station Landscape

As mentioned in § III-A, our measurement captures a total
of 4.10 billion cellular failure events with regard to 8.1M BSes.
In this part, we look at cellular failures from the viewpoint of
ISPs and BSes, by considering the geographic locations, ISP
discrepancies, radio access technologies, and signal strengths.

Geographic Location. By ranking the involved BSes with
their experienced number of cellular failures (in descending
order), we observe a Zipf-like [24] skewed distribution as
depicted in Figure 16 (where ¢ = 0.82 and b = 17.12).
The median and average numbers are 1 and 444 respectively,
while the maximum number reaches 8,941,860. We then
delve into the 10,000 top ranking BSes, and find that they
are mostly located in crowded urban areas. Hence, they are
confronted with essentially more ambient interferences and
heavier cellular access workloads, both of which aggravate
the problems.

ISP Discrepancy. The BSes involved in our study belong
to three mobile ISPs, referred to as ISP-A, ISP-B, and ISP-C.
Specifically, 49.6%, 23.0%, and 27.4% BSes belong to ISP-A,
ISP-B, and ISP-C, respectively. From Figure 17, we can see
that cellular failures occur more prevalently (30.6%) on ISP-
B’s users than on ISP-A’s (25.1%) and ISP-C’s (24.3%),
mainly due to the inferior signal coverage of ISP-B’s BSes.
In detail, while ISP-B’s BSes are a bit more than ISP-C’s, to
our knowledge most of ISP-B’s BSes have a smaller signal
coverage because they usually use a higher radio frequency.
The situation is similar in terms of frequency, as shown in
Figure 18.
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Another important factor contributing to the reliability dis-
crepancy across ISPs is the timing of refarming low-band
spectrum for 5G deployment to support broad-area coverage.
Specifically, ISP-A refarmed its 700 MHz band for 5G in
2021, and ISP-C started utilizing its 900 MHz band for 5G
in late 2022. In contrast, ISP-B only received approval to
refarm its 800 MHz band in mid-2023. As a result, during our
measurement in 2023-2024, ISP-A and ISP-C were able to
provide better 5G signal coverage in remote areas using low-
band 5G BSes, while ISP-B’s low-band 5G coverage was not
yet widely available. The poorer 5G signal coverage in such
regions results in more reliability issues for users of ISP-B.

Radio Access Technology (RAT). Among the involved
BSes, 16.3%, 7.7%, 48.6%, and 34.8% support 2G, 3G, 4G,
and 5G access, respectively. Here the four percentages add
up to more than 100% because some BSes simultaneously
support multiple RATs. While both the number and overall
signal coverage of 3G BSes are smaller than those of 2G, 4G
or 5G BSes, we observe that the prevalence of cellular failures
on 3G BSes is lower than that on 2G, 4G or 5G BSes, as
indicated in Figure 19. This is probably because 3G access
is usually not favored by user devices when 4G/5G access is
available, and the signal coverage of 3G is much worse than
that of 2G when 4G/5G access is unavailable. In other words,
3G networks currently face less resource contention from the
users (i.e., relatively “idle”) and thus manifest fewer cellular
failures.
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Received Signal Strength (RSS). In common sense, RSS
is a key factor that impacts the reliability of cellular service,
and a higher RSS level (or simply signal level) is usually
expected to come with better service reliability. However,
our measurement results in Figure 20 refute this common
understanding by revealing that excellent RSS seems to
increase the likelihood of cellular failures. As the signal level
increases from 0 (the worst) to 4 (good), the normalized
prevalence of cellular failures monotonously decreases. Here
the “normalized” prevalence denotes the regular prevalence (as
explained and computed in Table I) divided by the total time
during which the device is connected to a BS. We have to use
the normalized prevalence because the durations of different
signal levels can differ greatly from each other; in order to
account for this discrepancy, we divide each prevalence by its
average duration to achieve a fair comparison (the duration
data are also provided by Xiaomi based on a nationwide
measurement). On the other hand, when the signal level goes
to 5 (excellent), the normalized prevalence of cellular failures
suddenly grows to larger than each case of level 1 to 4.

To demystify this counter-intuitive phenomenon, we care-
fully examine a series of in-situ information corresponding to
such excellent-RSS cellular failures, including the BS location,
serving ISP, RAT, error code, efc.. As a result, we find that this
phenomenon usually happens around public transport hubs,
where the nearby BSes tend to be problematic simultaneously,
regardless of the serving ISPs and RATs. Actually, ISPs
often choose to densely deploy their BSes around a public
transport hub so as to better cope with the large volume of
human traffic. Owing to this special BS deployment strategy,
the nearby user devices can typically have excellent (level
5) RSS. On the other hand, such densely deployed BSes
could bring non-trivial signal interferences to each other [25].
In fact, the three ISPs’ radio frequency bands are fairly close to
each other (more specifically, with the median frequency being
ISP-B’s > ISP-C’s > ISP-A’s) and even occasionally overlap
one another, thus leading to potentially significant adjacent-
channel interference. More importantly, dense BS deployment
could make LTE mobility management highly complicated and
challenging [9], [26], causing frequent cellular failures tagged
with EMM_ACCESS_BARRED, INVALID_EMM_STATE,
etc. [11]. This is especially the case when multiple ISPs adopt
similar deployment strategies without coordinations.

IV. ENHANCEMENTS

Our multifold findings on cellular data connections failures
in § III drive us to rethink the current techniques widely
employed by cell phones, mobile OSes, and ISPs with respect
to their influence on the reliability of cellular connections.
Accordingly, in this section we provide insightful guidance
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for addressing various cellular failures at scale (§ IV-A), as
well as practical enhancements that have registered large-scale
deployment and yielded real-world impact (§ IV-B).

A. Guidelines in Principle

In § IIT we have revealed a variety of technical and busi-
ness issues that could lead to or aggravate cellular failures.
As elucidated in § III-B, cellular failures on 5G phones are
more prevalent and frequent than the other phones (without 5G
capability), even after the full development of 5G technologies
in 2023/2024, most probably owing to the unexpected negative
impact on Data_Setup_Error events brought by upgrading 5G
BSes to SA mode. Thus, we suggest that mobile phone vendors
be cautious with the rapidly emerging 5SG enhancements. More
specifically, we encourage the vendors to comprehensively
evaluate the impact of new 5G technologies on cellular relia-
bility in advance, so as to provide more reliable phone models
by proactively addressing potential negative effects.

Also in § III-B, we note that phones with newer Android
versions are more subject to cellular failures than phones with
older ones, due to the typically worse stability and robustness
of newly released OSes, in particular, the blindly prioritized
usage of 5G connection over 4G/3G/2G connections since
Android 10 and the premature failure judgment in Android 14.
Hence, we propose that for the vendors, sufficient testing for
new characteristics (e.g., the 4G/5G switching policy and the
cellular connection management) should be carried out before
pushing a new OS to certain phone models.

For mobile ISPs, we unravel in § III-C that due to less
workload and radio resource contention from user devices,
3G BSes are less subject to cellular failures than 2G, 4G
and 5G BSes. Thereby, ISPs may consider making better
use of these relatively “idle” infrastructure components to
alleviate the burdens on busy 2G/4G/5G BSes. Further, our
in-depth investigation into the correlation between signal level
(or RSS) and cellular failures uncovers that due to ISPs’
dense BS deployment around public transport hubs, cellular
failures can be rather severe despite very high signal levels, for
reasons of intensive signal interferences and highly complex
mobility management requirements. Therefore, we advise ISPs
to carefully control their BS deployment density in such
areas. Finally, we advocate the recent campaign of cross-ISP
infrastructure sharing [27], which aims to coordinate the BS
deployment among different ISPs for more efficient utilization
of radio infrastructure resources and thus can help mitigate
cellular failures.

B. Real-World Practices

Apart from the above heuristic guidelines for the broad
community, by collaborating with Xiaomi, we have practi-
cally explored optimization opportunities with respect to the
aggressive 5G usage policy (cf. § III-B) during RAT transition,
the conservative Data_Stall recovery mechanism (cf. § III-B)
and the premature failure judgment (cf. § III-B) in vanilla
Android. Based on critical insights obtained from our mea-
surement study, below we first devise a stability-compatible
RAT transition mechanism to make cellular connections more
reliable, and then leverage the time-inhomogeneous Markov
process (TIMP) model to accelerate the Data_Stall recovery,
and finally apply meticulous failure judgment to speed up
the Data_Setup_Error recovery. All efforts have been put into
practice and produced promising results.
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Stability-Compatible RAT Transition. As introduced in §
III-B, we observe that Android 10 adopts a quite aggressive
strategy to prioritize the usage of 5G connections during
RAT transition, which pays little attention to the cellu-
lar network status (e.g., signal level) and thus leads to a
large number of cellular failures. In fact, as shown in Fig-
ure 21, the normalized prevalence (or simply likelihood) of
cellular failures varies significantly across different signal
levels under 4G/5G networks. More specifically, as depicted
in Figure 22f, four cases of RAT transitions (including
4G level-l —  5G level-0, 4G level-2 — 5G level-0,
4G level-3 —  5G level-0, and 4G level-4 — 5G level-
0) drastically increase the likelihood of cellular failures, and
thus should be avoided if no side effect is incurred.

Here the side effect mainly lies in the potential data rate
increase if we allow such 4G— 5G RAT transitions. Nonethe-
less, given that in all the four cases the 5G access is coupled
with level-0 signal strength (and thus can hardly provide a high
data rate), the “potential” increase in data rate brought by these
RAT transitions can scarcely happen in principle. To check this
practically, we conduct small-scale benchmark experiments
using four different 5G phones as listed in Table I, finding
that these RAT transitions almost always (>95%) decrease the
data rate. Consequently, we conclude that in general the four
undesirable cases of RAT transitions can be safely avoided to
preserve the stability of cellular connections.

Apart from the major case of 4G— 5G transition, Figure 22
also depicts the increase of normalized prevalence of cellular
failures for the other RAT transition cases. Similar as in
the 4G— 5G transition, for all the RATs we can observe
“undesirable” transition cases where the prevalence of cellular
failures is largely increased. A common pattern of such cases
is that failures tend to occur when there is level-0 RSS after
transition. This can be intuitively explained by the highest
prevalence of cellular failures with regard to level-O RSS, as
shown in Figure 20. Therefore, we suggest OS developers to
carefully avoid these cases so as to improve cellular reliability.
Meanwhile, avoiding these problematic cases should not neg-
atively impact the devices’ data rates, as the RSS is extremely
weak after transition and thus can hardly provide better cellular
performance.

TIMP-based Flexible Data_Stall Recovery. Recall
in § III-B that to address Data_Stall failures, Android has
implemented a three-stage progressive recovery mechanism
that attempts to repair the user device’s cellular connection
with three operations: (1) cleaning up current connections,
(2) re-registering into the network, and (3) restarting the
device’s radio component. Before entering each stage (includ-
ing the first stage), Android would passively monitor the
existence of Data_Stall for one minute (which we call the
“probation”) in case that the previous (more lightweight)
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operation has already fixed the problem. Although the three
recovery operations can be quite effective when executed, as
discussed in § III-B, in practice we notice that the fixed-time
(i.e., one-minute) recovery trigger is usually lagging and not
user-friendly.

To figure out an appropriate trigger, our key insight is that
the conceptual three-stage progressive recovery in Android is
essentially a state transition process. As depicted in Figure 23,
the process includes five states: Sp, S1, S2, S3, and S, = Sj.
Here Sy denotes the start point (when Data_Stall is detected
by Android), Si,S2,S3 respectively represent starting the
execution of the aforementioned three recovery operations,
and S. marks the end of the process. According to our
measurement, the state transition from S; to the next state
is basically only dependent on S; and other stochastic events,
and thus can be modeled by a Markov process [12].

With the above understanding, we can then formalize the
expected overall recovery time (denoted as Tjecovery) SO as
to calculate more suitable triggers that are able to mini-
mize Tyecovery. However, the traditional Markov process can
only model a stationary process where the state transition
probability is not affected by the elapsed time ¢, and thus is not
applicable to our scenario where the state transition probability
also depends on ¢, as indicated in Figure 8 (the user device
can automatically fix the problem as time goes by).

Thus, using our dataset we build a time-inhomogeneous
Markov process [12] (TIMP) to model the complex state
transitions during the Data_Stall recovery process in a time-
sensitive manner, by incorporating recovery probabilities
within different time windows. Specifically, after entering .S,
the user device either automatically recovers from Data_Stall
within the time window [S;, S;11] (referred to as Case-1), or
enters the next state after Pro; seconds (referred to as Case-
2), where Pro; denotes the probation time for leaving S;.
For any elapsed time ¢ within the time window, we denote
the probability of the device’s recovering from Data_Stall
as P;_.(t). Thereby, the probability of its not recovering
(thus entering Sj;1) is Piip1 = 1 — Pic(0Pro;), where
oPro; = 22:0 Proy; is the elapsed time from Sy to S;y1.

At this point, we can formalize the expected recovery time
after entering state S; (denoted as 7;) as the sum of three

parts:
oPro;
7.- |
oPro;_1

The first part is the integral of P;_,.(¢) over the time window
[Si, Sit1], e, o Proi ) P, (t)dt, representing that Case-1

oPro;_
occurs. The second part is the probability of the device’s enter-
ing the next state (P;_,;41) multiplying the expected recovery
time (7;41) after entering the next state, i.e., P;_; 1 - Tj41,
representing that Case-2 occurs. Finally, the third part is the
time overhead for executing each recovery operation, denoted
as 01, Oz, and O3z, where O < Oy < Os given the
progressive nature of the three recovery operations.

In detail, we can obtain the approximate values of P;_..
and O; using our duration measurement data of Data_Stall
failures. Specially, when ¢ = 0, O, = 0 since no recovery
operation is executed at this stage; when ¢ = 3, T3 =
f;gm P3_,(t)dt+ O3, where t,, is the maximum duration of
Data_étall failures. Thus, we know that the expected overall
recovery time Ti.covery = T is essentially determined by the
three probations Prog, Pro;, and Pros.

Pise(t)dt +Piyivr - Tig1 + O (1)
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Fig. 22. Increase of normalized prevalence of cellular failures for different RAT transitions (e.g., from 4G level-i to 5G level-j). Deeper color represents larger

increase. For example, the dark cell in Figure 22f (¢ = 4, 7 = 0) means that

when a cell phone switches from 4G level-4 signal access to 5G level-0 signal

access, the normalized prevalence of cellular failures will sharply increase by 0.37, implying that this RAT transition will significantly increase the likelihood

of cellular failures.

P3-e(t)

Fig. 23. The time-inhomogeneous Markov process (TIMP) that models the
Data_Stall recovery process in Android, where the transition probabilities
among the five states are also impacted by the elapsed time (7).

Our optimization objective is then to minimize Tecovery fOr
different possible values of Prog, Pro;, and Pros. To this
end, we use the annealing algorithm [28] to search for the
global minimum, thus knowing that Ty.covery 18 minimized
when Prog = 21 seconds, Pro; = 6 seconds, and Proy, = 16
seconds. Consequently, the desired Tiecovery = 27.8 seconds,
which is smaller than a normal user’s tolerance of Data_Stall
duration (~30 seconds, ¢f. § III-B). In contrast, using the
default probations (Proj, = Pro} = Prof = 60 seconds)
in the original recovery mechanism of Android, the expected
recovery time is 38 seconds, indicating that our designed
trigger clearly outperforms the original one in Android.

Meticulous Failure Judgment. As mentioned in § III-B, the
Android system aggressively regards all aborted connections

Authorized licensed use limited to: Tsinghua University. Downloaded on

as Data_Setup_Error failures, which results in considerable
false positives (e.g., app-induced aborted connections). More-
over, they will not be reconnected (NO_RETRY_FAILURE)
even if new network sessions require them, as the system
assumes that retrying aborted connections would still be
unsuccessful. Therefore, in the misjudged case, the undesirable
situation will persist until a manual reset, leading to a long
recovery time.

To mitigate the impact of the premature failure judgment,
we rebuild it as a more meticulous method with the help of
cross-layer context tracing. The detailed pipeline is shown in
Figure 24. Specifically, when a network session triggers the
establishment of a data connection, we will log the detailed
information of the session and its initiator. If the setup request
for this session is canceled before the data connection is
successfully established, we will further record whether the
cancellation is actively executed by its initiator. In this way,
when encountering an aborted connection due to being no
longer needed by any network session during its establishment,
we can use the aforementioned information to assess if it stems
from app behaviors.

An active cancellation of the request indicates that the
termination of the establishment is not caused by an error.
In this case, we must not consider it as a failure; instead,
we allow it to terminate normally. Consequently, the cellular
connection can be timely re-established when a new network
session requires it, rather than waiting for the manual resetting,
significantly reducing the recovery time. We have also reported

October 17,2025 at 06:22:39 UTC from IEEE Xplore. Restrictions apply.



2702

Set up a new network session

|

[ Existing a data connection? J
Yes No

Trigger the data
connection establishment
l "|Session ID,
Request ID,
UID of the initiator,
l ... |Package name

Bind to the
connection

‘ Record session information ‘

‘ Setup request canceled ‘

Connection establishment
Yes finished?

o

Yes| Other session bound to the
connection?

No Data_Setup_Error

Unbind from the
connection

Terminate the Yes An active cancellation? No |Error Code:
connection normally : NO_RETRY_FAILURE

Fig. 24. The pipeline of our meticulous failure judgement.
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Fig. 25. Prevalence of cellular failures with the RAT transition policy of
vanilla Android and our Stability-Compatible RAT Transition.

the design defect of Android to the official development team
in Google, who have confirmed the issue and promised to fix
the issue in the upcoming Android release [13].

C. Deployment and Evaluation

In order to validate the real-world effect of our design
(§ TV-B), we conduct a two-period evaluation. We initially
patched the first (Stability-Compatible RAT Transition) and
the second (TIMP-based Flexible Data_Stall Recovery) mech-
anisms to CrowdEye and invited all the opt-in users in late Oct.
2020 to participate in our evaluation and 28M users opted-in
and upgraded to our patched system. This period of evalua-
tion has been conducted for two months (Nov.—Dec. 2020).
We further patched the third (Meticulous Failure Judgment)
mechanism and carried out the second period of evaluation
from Aug. 2024 to Sep. 2024 with the help of 16M opt-in
users.

As shown in Figure 25 and Figure 26, thanks to our
Stability-Compatible RAT Transition mechanism, cellular fail-
ures occur 10% less prevalently and 40.3% less frequently
on the participant 5G phones, without sacrificing the data
rate (as explained in § IV-B). In detail, for Data_Setup_Error,
Data_Stall, and Out_of_Service failures, the decrease of preva-
lence (frequency) is —7% (25.72%), 13.45% (42.4%), and
5% (50.26%), respectively. Here the only exception lies in
the prevalence of Data_Setup_Error failures, which slightly
increases after our optimization is applied; however, given
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Fig. 26. Frequency of cellular failures with the RAT transition policy of
vanilla Android and our Stability-Compatible RAT Transition.
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Fig. 27. Recovery time of Data_Stall failures with the Data_Stall recovery
mechanism in vanilla Android and our TIMP-based Flexible Recovery.
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Fig. 28. Prevalence of cellular failures with the failure judgment in vanilla
Android and our Meticulous Failure Judgment.

the occurrence frequency is significantly reduced by 25.72%
by our optimization, we feel that the exception is most
probably due to normal statistical fluctuation during the
evaluation—after all, the measurement study and the evalu-
ation study are conducted in two disjoint time periods.

Moreover, as shown in Figure 27, after our designed TIMP-
based Flexible Data_Stall Recovery mechanism is put into
practice, 38% reduction on the recovery time of Data_Stall
failures is achieved on average and the median recovery time is
reduced by 33% (from 3 seconds to 2 seconds). Furthermore,
our TIMP-based recovery mechanism works in a principled
and flexible manner, so it will automatically adapt to the
possible pattern changes of Android system behaviors and
cellular technologies in the future.

Further, as shown in Figure 28 and Figure 29, the Meticu-
lous Failure Judgment mechanism achieves a 16.9% (13.6%)
reduction in the prevalence (frequency) of Data_Setup_Error
failures by avoiding the misjudgment of app-induced aborted
connections, corresponding to 10.4% (9.3%) reduction on
the total prevalence (frequency) of all types of failures.
More notably, as illustrated in Figure 30, the average recov-
ery time for Data_Setup_Error failures reduces by 56%
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Fig. 29. Frequency of cellular failures with the failure judgment in vanilla
Android and our Meticulous Failure Judgment.
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Fig. 30. Recovery time of Data_Setup_Error failures with the failure judgment
in vanilla Android and our Meticulous Failure Judgment.

(from 163 seconds to 71 seconds), with the median time drop
by 25% from 4 seconds to 3 seconds.

Overall, the three enhancements jointly reduce 38% cellular
failures for 5G phones and save 31% failure recovery time
across all phones. Our enhancements only involve lightweight
modifications to the vanilla Android, primarily including
recording minimal system-level information and adjusting
the timing of recovery operations, without introducing any
new system services or persistent background processes. To
evaluate the overhead of our patched CrowdEye, we perform
small-scale benchmark experiments using the 70 involved
phone models. The results demonstrate that our optimizations
incur little overhead to a low-end Android phone: <3% CPU
utilization, ~60 KB of memory usage, and <100 KB of
storage space; the network usage is <100 KB per month. Even
in the worst case where the monthly number of failures reaches
24,000+ on a single phone (see Figure 7), the incurred CPU,
memory, and storage overheads are still acceptable: <9% CPU
utilization, ~3 MB of memory usage, and <20 MB of storage
space; the network usage is ~20 MB per month.

V. RELATED WORK

With the fast and wide penetration of wireless cellular
networks across the globe, the quality of cellular service
is becoming more and more important to a person’s every-
day life, an organization’s collaborative work, and even a
nation’s industrial information ecosystem. In the past ten
years or so, there has been a plethora of work studying the
characteristics of cellular networks, from the perspectives of
mobile ISPs/base stations [29], [30], user devices [31], [32],
[33], user-to-device interactions [34], and device-to-device
communications [35]. Researchers have also developed mea-
surement tools and platforms for conducting cellular network
measurements [36], [37].

Most of the above studies investigate the common aspects
(performance and availability) of cellular networks, such as
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bandwidth, delay, BS density, and signal coverage. Till now,
only a few studies focus on cellular reliability. Hui and Lau
[38] at T-Mobile leverage a cross-layer measurement strategy
to understand the Data_Stall failures and their impact on
mobile QoE, by analyzing the data collected at both sides of
BSes and user devices. They uncover specific root causes for
the problem, including link corruptions and packet drops dur-
ing radio state transitions, as well as incorrect implementation
of the radio network controller’s scheduling algorithm.

Prior work also suggests that BS and RAT handoffs can be
rather difficult to handle under complex environments, leading
to cellular service unreliability [39], [40] and unavailabil-
ity [9], [41] issues. Our study distinguishes itself from the
above in its extremely large user scale and ISP/BS coverage,
and particularly the comprehensive considerations of various
cellular failures in the wild. Moreover, when seeking the
reasons of cellular failures, our work is featured by the
joint analysis of phone hardware configurations, OS internals,
BS characteristics, and BS-to-phone interactions.

Measurement studies shed light on possible design and
implementation optimizations. Cellular network optimizations
have been extensively discussed from multiple aspects like
congestion control [42], [43], energy efficiency [44], and
security enhancements [45], as well as under various scenarios
like video streaming [46], web browsing [47], and cellular-
WiFi interaction [48]. In particular, researchers have proposed
to leverage lower-layer cellular information to boost the upper-
layer user-perceived performance [46], [47]. Contrasting the
above efforts, we identify and explore the unique optimiza-
tion opportunities (in coordination with a major Android
phone vendor) to enable more reliable and faster recovery
from several types of severe cellular failures. We have also
performed large-scale deployment of our proposed solutions
which yielded real-world impact.

VI. DISCUSSION

This section discusses the generalizability of our findings
and enhancements to other regions and ecosystems.

A. Generalizability to Other Regions

To explore the generalizability of our findings across
regions, we conduct a one-month benchmark study in India
and Spain in Mar. 2025, by inviting Xiaomi users in these
regions to install CrowdEye on their phones. Finally, 8M users
in India and 2M users in Spain opted in, involving 11 and 9
device models respectively. The hardware configurations of
these devices are similar to those listed in Table II.

The measurement results highlight the worldwide severity
of cellular reliability issues and demonstrate the broader
applicability of our conclusions. In general, cellular failures
occur frequently in both regions: devices in India and Spain
experienced an average of 5 and 9 failures in a month,
respectively. Moreover, we notice that the situation in these
regions is more severe than in China, where the monthly
average is 4 failures per device. This increased severity can
be explained by multiple factors. Specifically, the higher
failure frequency in India can be attributed to insufficient
cellular coverage in remote and rural areas. In Spain, it
may stem from the broader adoption of mmWave technology,
which—while offering higher bandwidth—is less stable than
mid-band 5G [49]. Additionally, the larger proportion of
devices running Android 14 further exacerbates reliability
issues in Spain, due to the system’s premature failure judgment
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discussed in § III-B. Taken together, these findings suggest
that the key factors we identified in China, including ISP’s
infrastructure investments, instability introduced by advanced
cellular technologies, and software defects on mobile devices,
also critically influence cellular reliability at a global scale.

B. Generalizability to Other Ecosystems

We believe that our findings and optimizations extend
beyond Android devices and are applicable to enhancing cel-
lular reliability in other ecosystems. Taking iOS for instance,
considerable user reports suggest that i0S devices face similar
reliability issues where cellular connections fail to work [50],
[51]. These issues often occur following system updates [50],
[52], suggesting that they may stem from underlying system
design defects in i0S. Furthermore, these failures often persist
until a manual reset of the connection is performed, which
resembles the phenomenon caused by Android’s premature
failure judgment, as discussed in § III-B. Thus, although orig-
inally designed for Android, our three enhancements provide
valuable insights for iOS developers as well. Moreover, our
findings in § III-C regarding the relationship between cellular
reliability and ISPs/BSes are also observed on mobile devices
running other OSes. For instance, Apple acknowledges that
i0S devices may suffer from cellular availability or reliability
issues in crowded areas, despite showing a strong signal
strength [53]. Therefore, our guidelines in principle, especially
suggestions for ISPs, can benefit devices across different OSes.

VII. CONCLUSION

This paper presents our efforts towards understanding and
combating the reliability issues in cellular networks. We con-
duct a long-term and large-scale measurement study with the
crowdsourcing help from 123 million opt-in users from 2020
to 2024. Collaborating with a major Android phone vendor,
we develop and deploy a continuous monitoring platform to
collect fine-grained, in-situ system traces, leveraging which
we reveal the nationwide prevalence and frequency of cellular
failures, along with their evolution trends over the past five
years. More in depth, we uncover severe reliability problems
in the cellular connection management of Android, as well as
the BS utilization and deployment strategies of mobile ISPs.
Driven by the study insights, we provide useful guidelines to
help tackle a variety of cellular failures. Most importantly,
some of our solutions have been adopted by 44 million
users, generating prominent realistic impacts. Furthermore, our
observations and enhancements could inspire mobile ISPs,
phone vendors, and OS developers to promote a more reliable
cellular ecosystem, with implications extending to regions
beyond China, complex contexts such as mobility manage-
ment, and future planet-wide 6G deployment.
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