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WebAssembly-based Delta Sync for Cloud Storage Services
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Delta synchronization (sync) is crucial to the network-level efficiency of cloud storage services, especially

when handling large files with small increments. Practical delta sync techniques are, however, only available

for PC clients and mobile apps, but not web browsers—the most pervasive and OS-independent access method.

To bridge this gap, prior work concentrates on either reversing the delta sync protocol or utilizing the na-

tive client, all striving around the tradeoffs among efficiency, applicability, and usability and thus forming an

“impossible triangle.” Recently, we note the advent of WebAssembly (WASM), a portable binary instruction

format that is efficient in both encoding size and load time. In principle, the unique advantages of WASM

can make web-based applications enjoy near-native runtime speed without significant cloud-side or client-

side changes. Thus, we implement a straightforward WASM-based delta sync solution, WASMrsync, find-

ing its quasi-asynchronous working manner and conventional In-situ Separate Memory Allocation greatly

increase sync time and memory usage. To address them, we strategically devise sync-async code decou-

pling and streaming compilation, together with Informed In-place File Construction. The resulting solution,

WASMrsync+, achieves comparable sync time as the state-of-the-art (most efficient) solution with nearly only

half of memory usage, letting the “impossible triangle” reach a reconciliation.
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1 INTRODUCTION

Recent years have witnessed the enormous popularity of cloud storage services, such as Dropbox,
Google Drive, iCloud Drive, and Microsoft OneDrive. They have not only provided a convenient
and pervasive data store for billions of Internet users, but also become a critical component of other
online applications. Their popularity brings a large volume of network traffic overhead to both the
client and cloud sides [18, 38]. Thus, a lot of efforts have been made to improve their network-level
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efficiencies, such as batched sync, deferred sync, delta sync, compression, and deduplication [12,
13, 17, 38, 39, 57]. Among these efforts, delta sync is of particular importance for its fine granularity
(i.e., the client only sends the changed content of a file to the cloud, instead of the entire file), thus
achieving significant traffic savings in the presence of users’ file edits [19, 40, 41].

Unfortunately, today delta sync is only available for PC clients and/or mobile apps in state-of-
the-art commercial cloud storage services (as detailed in Section 2), but not for the web—the most
pervasive and OS-independent access method. Taking Dropbox as an example, after a file f is
edited into a new version f ′ by a user, Dropbox’s PC client will apply delta sync to automatically
upload only the altered bits to the cloud; In contrast, Dropbox’s web interface requires users to
manually upload the entire content of f ′ to the cloud.1 This gap significantly affects web-based
user experiences in terms of both sync speed and traffic cost [19, 46, 47].

Web is a popular access method for cloud storage services [20, 30, 32]: All major services support
web-based access, while only providing PC clients and mobile apps for a limited set of OS distribu-
tions and devices. One reason is that many users do not want to install PC clients or mobile apps
on their devices to avoid the extra storage and CPU/memory overhead; in comparison, almost ev-
ery device has web browsers. Specially, for the emerging cloud-oriented systems and devices (e.g.,
Chrome OS and Chromebook) web browsers are perhaps the only option to access cloud storage.

To understand the fundamental obstacles of web-based delta sync, we implement a delta sync
solution, WebRsync, using state-of-the-art web techniques including JavaScript, WebSocket, and
HTML5 File APIs [31, 45] to achieve fast file I/O and transfer. WebRsync implements the algorithm
of rsync [49] and works with all modern web browsers. Our experiments show that the sync speed
of WebRsync is much lower than that of PC client-based rsync, since WebRsync is severely affected
by the low execution efficiency of JavaScript inside web browsers.

Thus, our first approach to optimizing WebRsync is to leverage the native client [25], a sandbox
for efficiently and securely executing compiled C/C++ code in a web browser. We embody this ap-
proach by developing WebRsync-native, and the experiments show that it can achieve comparable
sync time as PC client-based rsync. Nevertheless, using the native client requires the client side
to download and install plug-ins for web browsers, which substantially impairs the usability and
pervasiveness of WebRsync-native.

Driven by above observations, our second effort towards efficient web-based delta sync is to
“reverse” the WebRsync process by handing computation-intensive operations over to the server
side. The resulting solution is named WebR2sync (Web-based Reverse rsync). It significantly
cuts the computation burden on the web client, but brings considerable computation overhead
to the server side. To this end, we make additional two-fold efforts to optimize the server-side
computation overhead. First, we exploit the locality of users’ file edits, which can help bypass most
(up to ∼90%) chunk search operations in real usage scenarios. Second, by leveraging lightweight
checksum algorithms SipHash [9] and Spooky [11] instead of MD5, we can reduce the complexity
of chunk comparison by ∼5 times. The solution is referred to as WebR2sync+.

WebR2sync+, however, breaks the original workflow of rsync due to the reverse scheme. Hence,
mainstream cloud storage systems need to refactor their architectures for adopting WebR2sync+,
which greatly restricts the industrial applicability of WebR2sync+. Also, the collision probability
of SipHash is much higher than that of MD5. Thus, WebR2sync+ runs risks of making more sync
errors than other solutions, which greatly impairs the system reliability of WebR2sync+.

1In this article, we focus on pervasive file editing made by any applications that synchronize files to the cloud storage

through web browsers, rather than specific web-based file editors such as Google Docs, Microsoft Word Online, Overleaf,

and GitHub online editor. Technically, our measurements show that the latter usually leverages specific data structures

(rather than delta sync) to avoid full-content transfer and save the network traffic incurred by file editing.
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The above-described solutions, including WebRsync, WebRsync-native, and WebR2sync+, seem
to be all striving around the tradeoffs among efficiency, applicability, and usability, as compara-
tively listed in Table 1. Nevertheless, we still wish to explore the possibility of building an efficient
web-based delta sync solution without sacrificing applicability or usability.

Recently, an emerging technique (or web language) called WebAssembly [54] (or WASM for
short) has been attracting increasing attention in the design of web applications. WASM is a
portable binary instruction format (for web programming languages) that is efficient in both en-
coding size and load time. The unique advantages of WASM seem to be likely to enable web-based
delta sync applications to enjoy near-native runtime speed without requiring significant cloud-side
or client-side changes. Thereby, we explore how to leverage WASM to enable efficient web-based
delta sync in a user-friendly and easy-to-apply manner (i.e., to make the best of both worlds).

Observing that the calculation of MD5 checksums incurs the most computation overhead at the
client side, we leverage WASM to carry out this operation, resulting in the preliminary solution
called WASMrsync. To avoid blocking the main thread that may make the web page unresponsive,
WASM APIs are designed to be asynchronous. Therefore, we have to implement WASMrsync with
a quasi-asynchronous strategy, i.e., to implement the asynchronous WASM API invocations in
a synchronous manner using the await/async mechanism of JavaScript. Unfortunately, there are
overheads associated with running the await/async method: The current execution context has to
be captured, there is a thread transition, and a state machine is built through which the code runs.
Worse still, this await/async property of a WASM API invocation is propagated to the wrapping
function of the invocation, which introduces unnecessary overhead for executing even non-WASM
code in the wrapping function and thus severely increases the overall sync time. To mitigate this
shortcoming, we strategically devise sync-async code decoupling that extracts the synchronous
non-WASM code from asynchronous modules to avoid unnecessary await/async overhead.

Moreover, to improve the loading efficiency of asynchronous WASM modules, we adopt stream-

ing compilation (a novel WASM API) to download and compile WASM modules in parallel. When
using WASM, the browser typically needs to download, compile, and instantiate a WASM module
successively, and then call functions exported from that module through JavaScript. With stream-
ing compilation, the browser can start compiling WASM modules while the browser is still down-
loading the module bytes. As soon as the browser downloads all bytes of a single function, the
function can be passed to a background thread to compile it, which essentially improves the load-
ing efficiency.

In addition, when handling large files, we notice WASMrsync suffers from the time- and
memory-consuming file construction operations at the server side, which stem from the con-
ventional In-situ Separate Memory Allocation (ISMA) mechanism. Hence, we devise the In-

formed In-place File Construction (IIFC) mechanism by (1) encoding the actions to every
chunk of the updated file (ADD or COPY) with a dependency graph, (2) topologically sorting
the graph, and (3) delivering the processed information from the client side to the server side. As
a result, we only need to perform a single incremental memory allocation based on the memory
space occupied by the old file.

The eventual solution is named WASMrsync+. We evaluate the performance of WebRsync-
native, WebR2sync+, and WASMrsync+ by building prototype systems based on a Dropbox-like
system architecture. The results show that WebRsync-native can significantly reduce the sync time
of WebRsync—in fact, close to the sync time of rsync—while sacrificing usability. WebR2sync+
outpaces WebRsync by an order of magnitude, also approaching the performance of rsync, but
at the cost of limited applicability. In contrast, WASMrsync+ achieves comparable sync time as
WebR2sync+ (the former only takes 10%∼20% more sync time than the latter) and saves ∼50%
server-side memory usage, but without impairing the reliability, applicability, and usability.
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Table 1. Brief Comparison of the Web- and WASM-based Delta Sync Solutions as Proposed and

Implemented in this Article, in Terms of Technique(s), Stagnation (of Web Browser),

Efficiency, Applicability, and Usability

System Technique(s) Stagnation Efficiency Applicability Usability

WebRsync
HTML File APIs

and WebSocket
Yes Low Smooth adoption Easy

WebRsync

-native
Native client No High Smooth adoption

Extra plug-in

installation

WebRsync

-parallel

HTML5

web workers
No Low Smooth adoption Easy

WebRsync+
Edit locality exploiting

and lightweight hashing
Yes Moderate Smooth adoption Easy

WebR2sync
Reversing the

workflow of rsync
No Moderate

System architecture

refactoring
Easy

WebR2sync+
WebR2sync with

server-side optimizations
No High

System architecture

refactoring
Easy

WASMrsync WebAssembly No Moderate Smooth adoption Easy

WASMrsync+
WASMrsync with both client-

and server-side optimizations
No High Smooth adoption Easy

In summary, our work makes the following contributions:

• We elaborate the methodology for deeply and comprehensively studying web- and WASM-
based delta sync solutions, involving the key metrics and workloads for quantifying their
performance, as well as an automated tool for accurately quantifying the stagnation of web
browsers (Section 3).
• We propose a variety of web-based delta sync solutions in a step-by-step optimization man-

ner, to reveal the challenges and opportunities of supporting delta sync in traditional frame-
works (Section 4).
• We explore the practical feasibility of leveraging WASM to enable efficient web-based delta

sync in a user-friendly and easy-to-apply manner by developing the first workable WASM-

based delta sync solution (WASMrsync) (Section 5).
• We implement an efficient WASM-based delta sync solution (WASMrsync+) without sacri-

ficing applicability or usability by devising both the client- and server-side optimizations
(Section 6).

At last, we compare in Table 1 all the web- and WASM-based delta sync solutions as proposed
and implemented in this article so readers can easily figure out how they vary. We also make all
their source code publicly available at https://WASMDeltaSync.github.io.

2 RELATED WORK AND STATUS QUO

Delta sync, known as delta encoding or delta compression, is a way of storing or transmitting
data in the form of differences (deltas) between different versions of a file, rather than the com-
plete content of the file [56]. It is very useful for network applications where file modifications or
incremental data updates frequently happen, e.g., storing multiple versions of a file, distributing
consecutive user edits to a file, and transmitting video sequences [28]. In the past four decades,
a variety of delta sync algorithms or solutions have been put forward, such as UNIX diff [27],
Vcdiff [33], WebExpress [26], Optimistic Deltas [10], rsync [49], and content defined chunk-

ing (CDC) [34].
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Due to its efficiency and flexibility, rsync has become the de facto delta sync protocol widely
used in practice. It was originally proposed by Tridgell and Mackerras in 1996 as an algorithm
for efficient remote update of data over a high-latency, low-bandwidth network link [52]. Then,
in 1999, Tridgell thoroughly discussed its design, implementation, and performance in Reference
[51]. Being a standard Linux utility included in all popular Linux distributions, rsync has also been
ported to Windows, FreeBSD, NetBSD, OpenBSD, and MacOS [49].

According to a real-world usage dataset [38], the majority (84%) of files are modified by the users
at least once, thus confirming the importance of delta sync on the network-level efficiency of cloud
storage services. Among all mainstream cloud storage services, Dropbox was the first to adopt delta
sync (more specifically, rsync) in around 2009 in its PC client-based file sync process [40]. Then,
SugarSync, iCloud Drive, OneDrive, and Seafile followed the design choice of Dropbox by utilizing
delta sync (rsync or CDC) to reduce their PC clients’ and cloud servers’ sync traffic. After that, two
academic cloud storage systems, namely, QuickSync [13] and DeltaCFS [64], further implemented
delta sync (rsync and CDC, respectively) for mobile apps.

Drago et al. studied the system architecture of Dropbox and conducted large-scale measure-
ments based on ISP-level traces of Dropbox network traffic [18]. They observed that the Dropbox
traffic was as much as one-third of the YouTube traffic, which strengthens the necessity of Drop-
box’s adopting delta sync. Li et al. investigated in detail the delta sync process of Dropbox through
various types of controlled benchmark experiments and found it suffers from both traffic and com-
putation overuse problems in the presence of frequent, short data updates [40]. To this end, they
designed an efficient batched synchronization algorithm called UDS (update-batched delayed

sync) to reduce the traffic usage, and further extended UDS with a backwards compatible Linux
kernel modification to reduce the CPU usage (recall that delta sync is computation intensive).

Despite the wide adoption of delta sync (particularly rsync) in cloud storage services, practi-
cal delta sync techniques are currently only available for PC clients and mobile apps rather than
web browsers. We conduct a qualitative study of delta sync support in state-of-the-art cloud stor-
age services. The target services are selected for either their popularity (Dropbox, Google Drive,
Microsoft OneDrive, iCloud Drive, and Box.com) or representativeness in terms of techniques used
(SugarSync, Seafile, QuickSync, and DeltaCFS). For each service, we examined its delta sync sup-
port with different access methods, using its latest-version (as of March 2021) Windows PC client,
Android app, and Chrome web browser. The only exception occurred to iCloud Drive, for which
we used its latest-version MacOS client, iOS app, and Safari web browser.

To examine a specific service with a specific access method, we first uploaded a 1 MB2 highly
compressed new file (f ) to the cloud (so the resulting network traffic would be slightly larger
than 1 MB). Next, on the user side, we appended a single byte to f to generate an updated file f ′.
Afterwards, we synchronized f ′ from the user to the cloud with the specific access method and
meanwhile recorded the network traffic consumption. In this way, we can reveal if delta sync is
applied by measuring the traffic consumption—if the traffic consumption was larger than 1 MB,
the service did not adopt delta sync; otherwise (i.e., the traffic consumption was just tens of KBs),
the service had implemented delta sync.

Based on the examination results listed in Table 2, we have the following observations: First,
delta sync has been widely adopted in the majority of PC clients of cloud storage services. How-
ever, it has never been used by the mobile apps of any popular cloud storage services, though
two academic services [13, 64] have implemented delta sync in their mobile apps and proved the
efficacy. In fact, as the battery capacity and energy efficiency of mobile apps grow constantly, we
expect delta sync to be widely adopted by mobile apps in the near future [37]. Finally, none of the

2We also experiment with files much larger than 1 MB in size, i.e., 10 MB and 100 MB, and got the same results.
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Table 2. Delta Sync Support in Nine Cloud

Storage Services

Service PC Client Mobile App Web Browser

Dropbox Yes No No

Google Drive No No No

OneDrive Yes No No

iCloud Drive Yes No No

Box.com No No No

SugarSync Yes No No

Seafile [50] Yes No No

QuickSync [13] Yes Yes No

DeltaCFS [64] Yes Yes No

studied cloud storage services supports web-based delta sync, despite web browsers constituting
the most pervasive and OS-independent method for accessing Internet services.

To this end, we first introduce the general idea of web-based delta sync with basic motiva-
tion, preliminary design, and early-stage performance evaluation using limited workloads and
metrics [61]. Nevertheless, in practice, we notice that leveraging conventional web technologies
alone can not enable the efficient web-based delta sync without sacrificing the practicality (i.e.,
reliability, applicability, and usability). Fortunately, the emerging of WebAssembly [54] sheds light
on how to enable web-based applications in both efficient and practical manners. Many useful
WebAssembly-based browser applications have been proposed, such as interactive 3D visualiza-
tion [21], resource accounting [24], audio and video software [36], and games [63]. To this end,
we go a step further to introduce the WebAssembly-based delta sync with preliminary design,
implementation, optimizations, and performance evaluation using limited workloads and metrics.
In this article, our work is conducted based on Reference [62] while going beyond it in terms of
techniques, evaluations, and presentations.

3 STUDY METHODOLOGY

In this section, to comprehensively understand the challenges and opportunities of supporting
delta sync under current web frameworks, we design a variety of quantitative experiments for
benchmarking web-based delta sync systems. We first present several metrics to assess the per-
formance of web-based delta sync systems (Section 3.1) and then propose a variety of workloads
to evaluate these metrics (Section 3.2). We also develop a tool named StagMeter to measure the
client-side stagnation of these systems (Section 3.4). Last, we set up a Dropbox-like architecture
(as an example of the state-of-the-art industrial cloud storage services) with the server, client, and
network configurations detailed in Section 3.3. Apart from a new metric (memory usage) and a
new workload (heavy workload), other parts of the methodology were proposed in our previous
work [38, 62].

3.1 Metrics

We propose five metrics to measure the results of our experiment: (1) sync efficiency, which mea-
sures how quickly a file operation is synchronized to the cloud; (2) computation overhead, which
explains the difference in sync efficiency of web-based delta sync systems; (3) sync traffic, which
quantifies how much network traffic is consumed by each web-based delta sync system; (4) memory

usage, which reveals the amount of memory space required at the server side of web-based delta
sync systems; and (5) service throughput, which shows the scalability of each web-based delta sync
system using standard VM server instances.
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3.2 Workloads

To evaluate the performance of each web-based delta sync system under various practical usage
scenarios, we generate simple (i.e., one-shot), regular (i.e., periodical), intensive, and heavy (i.e.,
large files) workloads. To generate simple workloads, we make random append, insert, and cut3

operations of different edit sizes (ranging from 1 B, 10 B, 100 B, 1 KB, 10 KB, to 100 KB) against
real-world files collected from real-world cloud storage services. The dataset is collected in our
previous work and is publicly released [38], where the average file size is nearly 1 MB. One file is
edited only once (the so-called “one-shot”), and it is then synchronized from the client side to the
server side. For an insert or cut operation, when its edit size ≥1 KB, it is first dispersed into 1–20
continuous sub-edits4 and then synchronized to the server like the simple workload.

Regular and intensive workloads are mainly employed to evaluate the service throughput of
each system. To generate regular workloads, we still make a certain type of edit to a typical file,
whose file size is ∼5 MB, but the edit operation is executed every 10 seconds. To generate a prac-
tical intensive workload, we use a benchmark of over 8,755 pairs of source files taken from two
successive releases (versions 4.5 and 4.6) of the Linux kernel source trees. The average size of
the source files is 23 KB, and the file-edit locality is generally stronger than that in Figure 15 (as
shown in Figure 1). Specifically, we first upload all the files of the old version to the server side
in an FTP-like manner. Then, we synchronize all the files of the new version one-by-one to the
server side using the target approaches. There is no time interval between two sequential file
synchronizations.

The heavy workload is used to investigate the performance of web-based delta sync systems
in large-file edit scenarios. To create heavy workloads, we generate large files of different sizes
(ranging from 10 MB, 20 MB, 40 MB, 60 MB, 80 MB, to 100 MB) that mimic real-world files. Then,
we also make random append, insert, and cut operations of different edit sizes (ranging from 1 B,
10 B, 100 B, 1 KB, 10 KB, 100 KB, to 1 MB) against these large files. We edit each file only once and
synchronize them from the client side to the server side. For an insert or cut, when its edit size
≥1 KB, it is also first dispersed into 1–20 continuous sub-edits and then synchronized to the server
as the simple workload does.

3.3 Experiment Setup

Using the abovementioned measurement metrics and workloads, we conduct a variety of compara-
tive measurement studies of web-based delta sync systems. For each system, we set up a Dropbox-
like system architecture by running the web service on a standard VM server instance (with a
quad-core Intel Xeon CPU @2.5 GHz and 16 GB memory) rented from Aliyun ECS, and all file
content is hosted on object storage rented from Aliyun OSS. The ECS VM server and OSS storage
are located at the same data center, so there is no bottleneck between them. The client side of
each system was executed in the Google Chrome browser (Windows version 56.0) running on a
laptop with a quad-core Intel Core-i5 CPU @2.8 GHz, 16 GB memory, and an SSD disk. The server
side and client side lie in different cities (i.e., Shanghai and Beijing) and different ISPs (i.e., China
Unicom and CERNET), as depicted in Figure 2. The network RTT is ∼30 ms, and the network band-
width is ∼100 Mbps. Therefore, the network bottleneck is kept minimal in our experiments so the
major system bottleneck lies at the server and/or client sides. If the network condition becomes
much worse, then the major system bottleneck might shift to the network connection.

3Here, “cut” means to remove some bytes from a file.
4A continuous sub-edit means that the sub-edit operation happens to continuous bytes in the file. More details are explained

in Section 4.3.2, especially in Figures 14 and 15.
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Fig. 1. File-edit locality in the source files of two suc-

cessive Linux kernel releases (versions 4.5 and 4.6).

Fig. 2. Experiment setup in China.

3.4 Measuring Stagnation

In practice, the computation-intensive operations (e.g., chunk search and comparison) usually
bring considerable computation overhead at the client side for a web-based delta sync system. The
heavy CPU consumption causes web browsers to frequently stagnate and even hang. To quantita-
tively understand the stagnation of web browsers perceived by users, we develop the StagMeter
tool to measure the stagnation time by automatically integrating a piece of JavaScript code into the
web browser.5 StagMeter periodically6 prints the current timestamp on the concerned web page
(e.g., the web page that executes delta sync). If the current timestamp (say, t ) is successfully printed
at the moment, then there is no stagnation; otherwise, there is stagnation and then the printing of
the current timestamp will be postponed to t ′ > t . Therefore, the corresponding stagnation time
is calculated as t ′ − t .

4 WEB-BASED DELTA SYNC

It is worth mentioning that this section presents contributions of our previous work [62]. In this
section, we introduce a variety of web-based delta sync solutions in a step-by-step optimization
manner. First, we propose the first workable solution named WebRsync that works as a baseline
in Section 4.1. Through performance benchmarking, we find that there exist drawbacks of We-
bRsync. Then, we investigate several client-side optimizations to partially address the drawback
of WebRsync in Section 4.2. Measurement results show that the drawback of WebRsync cannot
be fundamentally addressed via only client-side optimizations. Thus, we present WebR2sync+, the
preliminary practical solution for web-based delta sync, in Section 4.3. Although they are not
practically acceptable solutions that satisfy both high sync efficiency and practicability (i.e., appli-
cability, usability, and reliability), they indicate the challenges and optimization opportunities of
supporting delta sync under current web frameworks.

4.1 WebRsync

WebRsync is the first workable implementation of web-based delta sync for cloud storage services.
It is implemented in JavaScript based on HTML5 File APIs [45] and WebSocket. It follows the
algorithm of rsync and thus keeps the same behavior as PC client-based approaches.

4.1.1 Design and Implementation. We design WebRsync by adapting the working procedure of
rsync to the web browser scenario. As demonstrated in Figure 3, in WebRsync when a user edits a

5We can also directly use the native profiling tool of the Chrome browser to visualize the stagnation, whose results we

found more complicated to interpret than those of StagMeter.
6By default, we set the period as 100 ms to simulate the minimum intervals of common web users’ operations.
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Fig. 3. Design flow chart of WebRsync.

file from f to f ′, the client instantly sends a request to the server for the file synchronization. On
receiving the request, the server first executes fixed-size chunk segmentation and fingerprinting

operations on f (which is available on the cloud side) and then returns a checksum list of f to
the client. Except for the last chunk, each data chunk is typically 8 KB in size. Thus, when f is
1 MB in size, its checksum list contains 128 weak 32-bit checksums as well as 128 strong 128-bit
MD5 checksums [49]. After that, based on the checksum list of f , the client first performs chunk
search and comparison operations on f ′ and then generates both the matching tokens and literal

bytes. Note that search and comparison operations are both conducted in a byte-by-byte manner on
rolling checksums; in comparison, segmentation and fingerprinting operations are both conducted
in a chunk-by-chunk manner so they incur much lower computation overhead. The matching
tokens indicate the overlap between f and f ′, while the literal bytes represent the novel parts in
f ′ relative to f . Both of them are sent to the server for constructing f ′. Finally, the server returns
an acknowledgment to the client to conclude the process.

We implement the client side of WebRsync based on the HTML5 File APIs [45] and the Web-
Socket protocol, using 1,500 lines of JavaScript code. Following the common practice to optimize
the performance of JavaScript execution, we adopt the asm.js language [8] to first write the client
side of WebRsync in C code and then compile it to JavaScript. The server side of WebRsync is
developed based on the node.js framework, with 500 lines of node.js code and 600 lines of C code;
its architecture follows the server architecture of Dropbox. Similar to Dropbox, the web service of
WebRsync runs on a VM server rented from Aliyun ECS [5], and the file content is hosted on object
storage rented from Aliyun OSS [6]. More details on the server, client, and network configurations
have been described in Section 3.3 and Figure 2.

4.1.2 Performance Benchmarking. We first compare the performance of WebRsync and rsync
under the simple workload to reveal the challenges and optimization opportunities of enabling the
web-based delta sync. We perform random append, insert, and cut operations of different edit sizes
(ranging from 1 B, 10 B, 100 B, 1 KB, 10 KB, to 100 KB) upon real-world files [38], as mentioned
in Section 3.2. For each of the three different types of edit operations, we first measure its average
sync time corresponding to each edit size and then decompose the average sync time into three
stages: server, network, and client. Moreover, we measure its average CPU utilization on the client
side corresponding to each edit size.

As shown in Figure 4, for each type of file edit operations the sync time of WebRsync is signifi-
cantly longer than that of rsync (by 16–35 times). In other words, WebRsync is much slower than
rsync on handling the same file edit. Among the three types of file edits, we notice that syncing
a cut operation with WebRsync is always faster than syncing an append/insert operation (for the
same edit size), especially when the edit size is relatively large (10 KB or 100 KB). This is because
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Fig. 4. Average sync time using WebRsync for various sizes of file edits (including append, insert, and cut)

under a simple workload. The error bars show the minimum and maximum values at each point.

Fig. 5. Breakdown of the sync time of (a) rsync and (b) WebRsync for append operations, as well as the

corresponding average client-side CPU utilizations. The situations for insert and cut operations are similar.

a cut operation reduces the length of a file while an append/insert operation increases the length
of a file.

Furthermore, we decompose the sync time of rsync and WebRsync into three stages: at the
client side, across the network, and at the server side, as depicted in Figures 5(a) and 5(b). For each
type of file edit, around 40% of rsync’s sync time is spent at the client side and around 35% is
spent at the network side; in comparison, the vast majority (60%–92%) of WebRsync’s sync time is
spent at the client side, while less than 5% is spent at the network side. This indicates that the sync
bottleneck of WebRsync is due to the inefficiency of the web browser’s executing JavaScript code.
Additionally, Figure 5(c) illustrates that the CPU utilization of each type of file edit in WebRsync
is as nearly twice as that of rsync, because JavaScript programs consume more CPU resources.

The heavy CPU consumption causes web browsers to frequently stagnate and even hang. Using
the aforementioned measurement tool in Section 3.4, StagMeter, we measure and visualize the
stagnation of WebRsync (on handling the three types of file edits) in Figure 6. Note that StagMeter
only attempts to print 10 timestamps for the first second. Therefore, spaces between consecutive
timestamps represent stagnation, and larger spaces imply longer stagnation. As indicated in all
the three subfigures, the stagnation is directly associated with high CPU utilizations.

4.2 Native Extension, Parallelism, and Client-side Optimization of WebRsync

We investigate three approaches to partially address the drawback of WebRsync. For each ap-
proach, we first describe its working principle and then evaluate its performance using different
types of file edits.

WebRsync-native. Given that the sync speed of WebRsync is much lower than that of the PC
client-based delta sync solution (rsync), our first approach to optimizing WebRsync is to leverage
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Fig. 6. Stagnation captured by StagMeter for different edit operations and the associated CPU utilizations.

The stagnation time is illustrated by the discontinuation of the timestamp on the sync process time.

Fig. 7. Average sync time using WebRsync-native for various sizes of file edits under a simple workload.

the native client [25] for web browsers. The native client is a sandbox for efficiently and securely
executing compiled C/C++ code in a web browser and has been supported by all mainstream web
browsers. In our implementation, we use the Chrome native client to accelerate the execution of
WebRsync on the Chrome browser. We first use HTML5 and JavaScript to compose the webpage
interface, through which a user can select a local file to synchronize (to the cloud). Then, the path
of the selected local file is sent to our developed native client (written in C++). Afterwards, the
native client reads the file content and synchronizes it to the cloud in a similar way as rsync. When
the sync process finishes, the native client returns an acknowledgment message to the webpage
interface, which then shows the user the success of the delta sync operation.

Figure 7 depicts the performance of WebRsync-native, in comparison to the performance of
original WebRsync. Obviously, WebRsync-native significantly reduces the sync time of WebRsync,
in fact close to the sync time of rsync. Accordingly, the CPU utilization is decreased and the
stagnation of the Chrome browser is fully avoided. Nevertheless, using the native client requires
the user to download and install extra plug-in components for the web browser, which essentially
impairs the usability and pervasiveness of WebRsync-native.

WebRsync-parallel. Our second approach is to use HTML5 web workers [15] for parallelism or
threading. Generally speaking, when executing JavaScript code in a webpage, the webpage be-
comes unresponsive until the execution is finished—this is why WebRsync would lead to frequent
stagnation and even hanging of the web browser. To address this problem, a web worker is a
JavaScript program that runs in the background, independently of other JavaScript programs in
the same webpage. When we apply it to WebRsync, the original single JavaScript program is di-
vided to multiple JavaScript programs that work in parallel. Although this approach can hardly
reduce the total sync time (as indicated in Figure 8) or the CPU utilizations (as shown in Figure 9,
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Fig. 8. Average sync time using WebRsync-parallel for various sizes of file edits under a simple workload.

Fig. 9. Although WebRsync-parallel is unable to reduce the CPU utilizations (relative to WebRsync), it can

fully avoid stagnation for the Chrome web browser by utilizing HTML5 web workers.

the upper part), it can fully avoid stagnation for the Chrome browser (as shown in Figure 9, the
lower part).

WebRsync+. Later, in Section 4.3, we describe in detail how we exploit users’ file-edit locality and
lightweight hash algorithms to reduce server-side computation overhead. As a matter of fact, the
two-fold optimizations can also be applied to the client side. Thereby, we implement the two opti-
mization mechanisms at the client side of WebRsync by translating them from C++ to JavaScript,
and the resulting solution is referred to as WebRsync+. As illustrated in Figure 10, WebRsync+ sig-
nificantly outpaces WebRsync in terms of sync time owing to the client-side optimizations, which
is basically within our expectation. Further, we decompose the sync time of WebRsync+ into three
stages: at the client side, across the network, and at the server side, as depicted in Figure 11. Com-
paring Figure 11 with Figure 5(b) (breakdown of the sync time of WebRsync into three stages), we
find that the client-side time cost of WebRsync+ is remarkably reduced, thanks to the two optimiza-
tion mechanisms. However, WebRsync+ cannot fully avoid stagnation for web browsers; instead,
it can only alleviate the stagnation compared to WebRsync.

Summary. With the above three-fold efforts, we conclude that the drawback of WebRsync cannot
be fundamentally addressed via solely client-side optimizations. That is to say, we may need more
comprehensive solutions where the server side is also involved.

4.3 WebR2sync+: The Preliminary Practical Solution

This subsection presents WebR2sync+, the preliminary practical solution for web-based delta sync.
The high efficiency of WebR2sync+ is attributed to multi-fold endeavors at both client and server
sides. We first present the basic solution, WebR2sync, which improves WebRsync (Section 4.3.1),
and then describe the server-side optimizations for mitigating the computation overhead
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Fig. 10. Average sync time using WebRsync+ for various sizes of file edits under a simple workload (in com-

parison to WebRsync).

Fig. 11. Breakdown of the sync time of WebRsync+ (shown in Figure 10) for different types of edit operations.

Fig. 12. Design flow chart of WebR2sync.

(Section 4.3.2). The solution that combines both WebR2sync with the server-side optimizations
is referred to as WebR2sync+, and we also discuss its limitations in detail in Section 4.3.3.

4.3.1 WebR2sync. As depicted in Figure 12, to address the overload issue, WebR2sync reverses
the process of WebRsync (cf. Figure 3) by moving the computation-intensive search and compar-
ison operations to the server side; meanwhile, it shifts the lightweight segmentation and finger-
printing operations to the client side. Compared with the workflow of conventional web-based
delta sync, in WebRsync, the checksum list of f ′ is generated by the client and the matching to-
kens are generated by the server, while the literal bytes are still generated by the client. Note that
this allows us to implement the search and comparison operations in C rather than in JavaScript
at the server side. Therefore, WebR2sync can not only avoid stagnation for the web client, but also
effectively shorten the duration of the whole delta sync process.
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Fig. 13. The three-level chunk searching scheme used by rsync and WebR2sync.

4.3.2 Server-side Optimizations. While WebR2sync significantly cuts the computation burden
on the web client, it brings considerable computation overhead to the server side. To this end, we
make additional two-fold efforts to optimize the server-side computation overhead.

Exploiting the locality of file edits in chunk search. When the server receives a checksum
list from the client, WebR2sync uses a three-level chunk searching scheme to figure out matched
chunks between f and f ′, as shown in Figure 13 (which follows the three-level chunk searching
scheme of rsync [49]). Specifically, in the checksum list of f ′ there is a 32-bit weak rolling check-
sum (calculated by the Adler32 algorithm [14]) and a 128-bit strong MD5 checksum for each data
chunk in f ′. When this checksum list is sent to the server, the server leverages an additional (rolling

checksum) hash table whose every entry is a 16-bit hash code of the 32-bit rolling checksum [49].
The checksum list is then sorted according to the 16-bit hash code of the 32-bit rolling checksums.
Note that a 16-bit hash code can point to multiple rolling and MD5 checksums. Thereby, to find
each matched chunk between f and f ′, the three-level chunk searching scheme always goes from
the 16-bit hash code to the 32-bit rolling checksum and further to the 128-bit MD5 checksum.

The three-level chunk searching scheme can effectively minimize the computation overhead for
general file-edit patterns, particularly random edits to a file. However, it has been observed that
real-world file edits typically follow a local pattern rather than a general (random) pattern, which
has been exploited to accelerate file compression and deduplication [42, 58–60]. To exemplify this
observation in a quantitative manner, we analyze two real-world fine-grained file-editing traces
with respect to Microsoft Word and Tencent WeChat collected by Zhang et al. [64]. The traces are
fine-grained, since they leveraged a loopback user-space file system (Dokan [16] for Windows) to
record not only the detailed information (e.g., edit type, edit offset, and edit length) of users’ file
operations but also the content of the updated data. In each trace, a user made several continu-

ous sub-edits to a file and then did a save operation, and this process was repeated many times.
Here, a continuous sub-edit means that the sub-edit operation happens to continuous bytes in the
file, as demonstrated in Figure 14. Our analysis results of the above-mentioned traces (Microsoft
Word and Tencent WeChat), in Figure 15, show that in nearly a half (46%) of cases a user saved
1–5 continuous sub-edits, thus indicating fine locality. Besides, in over one-third (35%) of cases a
user saved 6–10 continuous sub-edits, which still implies sound locality. However, in only a mi-
nority (5%) of cases a user saved more than 16 continuous sub-edits, which means undesirable
locality.

In addition, to explore the universality of the file-edit locality characteristics, we have also con-
ducted experiments on multimedia files (i.e., images and videos). However, our experimental re-
sults indicate that for images and videos, even minor file edits can lead to full file synchronization,
thus losing the advantages of delta sync. After further analysis of this phenomenon, we find that
it is due to the encoding and decoding characteristics of images and videos. Thus, we adopt text
files of different sizes as our study’s objectives, rather than multimedia files (i.e., images and files).
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Fig. 14. An example of continuous sub-edits due to the locality of file edits: (a) the relationship between a

file edit and its constituent continuous sub-edits; (b) the worst-case scenario in terms of locality.

Fig. 15. A real-world example of file-edit local-

ity. The number of continuous sub-edits is highly

clustered.

Fig. 16. The proportion of the three-level chunk

searching and the bypass chunk searching used in syn-

chronizing files with different sub-edits.

The locality of real-world file edits offers us an opportunity to bypass a considerable portion
of (unnecessary) chunk search operations. In essence, given that edits to a file are typically local,
when we find that the ith chunk of f ′ matches the jth chunk of f , the (i + 1)-th chunk of f ′ is
highly likely to match the (j + 1)-th chunk of f . Therefore, we “simplify” the three-level chunk
searching scheme by directly comparing the MD5 checksums of the (i + 1)-th chunk of f ′ and the
(j + 1)-th chunk of f . If the two chunks are identical, then we simply move forward to the next
chunk and call this process a bypass chunk searching; otherwise, we return to the regular three-
level chunk searching scheme. In other words, file edits with fine locality (i.e., those having a small
number of sub-edits) can leave more continuous blocks unmodified, which enables us to perform
more lightweight bypass chunk searching instead of the heavy three-level chunk searching. To
explore how often the three-level chunk searching scheme versus the bypass chunk searching
scheme is used, we conduct a measurement study based on the aforementioned Microsoft Word
and Tencent WeChat traces [64]. Figure 16 illustrates that for files with different sub-edits, the use
of the bypass searching scheme accounts for more than 90%, while the three-level chunk searching
scheme accounts for less than 10%. In other words, we can bypass most (up to ∼90%) chunk search
operations in real usage scenarios by exploiting the locality of users’ file edits. In particular, the
frequency of using the bypass searching scheme increases with the decrease of the number of sub-
edit operations, which is within our expectation, since more sub-edits usually mean undesirable
file-edit locality.
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Table 3. A Comparison of Candidate Pseudorandom Hash

Functions in Terms of Collision Probability (on 64-bit Hash

Values) and Computation Overhead (Cycles per Byte)

Hash Function Collision Probability Cyclesper Byte

MD5 Very Low (<10−9) 5.58

Murmur3 High (≈1.05 × 10−4) 0.33

CityHash High (≈1.03 × 10−4) 0.23

FNV High (≈1.09 × 10−4) 1.75

Spooky High (≈9.92 × 10−5) 0.14

SipHash Low (<10−6) 1.13

Replacing MD5 with SipHash in chunk comparison. By exploiting the locality of users’ file
edits as above, we manage to bypass most chunk search operations. After that, we notice that
the majority of server-side computation overhead is attributed to the calculations of MD5 check-
sums. MD5 was initially designed as a cryptographic hash function for generating secure and low-
collision hash codes [48], which makes it computationally expensive. Thus, we wonder whether
MD5 can be replaced with a lightweight pseudorandom hash function in chunk comparison with
no system performance degradation.

Quite a few pseudorandom hash functions can satisfy our goal, such as Spooky [11], FNV [35],
CityHash [23], SipHash [9], and Murmur3 [3]. Among them, some are very lightweight but vul-
nerable to collisions. For example, the computation overhead of MD5 is around 5 to 6 cycles per
byte [53], while the computation overhead of CityHash is merely 0.23 cycle per byte [4], but the
collision probability of CityHash is quite high. However, some pseudorandom hash functions have
extremely low collision probability but are a bit slow. As listed in Table 3, SipHash seems to be a
sweet spot—its computation overhead is about 1.13 cycles per byte, and its collision probability is
acceptably low. By replacing MD5 with SipHash in our web-based delta sync solution, we manage
to reduce the computation complexity of chunk comparison by nearly 5 times.

Although the collision probability of SipHash is relatively low, it is still three orders of magnitude
higher than that of MD5 (as shown in Table 3). Thus, the adoption of Siphash also brings with
some service reliability problems, which we will analyze in detail in Section 4.3.3. As a fail-safe
mechanism, we make a lightweight full-content hash checking (using the Spooky algorithm) in the
end of a file synchronization to deal with possible collisions in SipHash chunk fingerprinting. We
select the Spooky algorithm because it works the fastest among all the candidate pseudorandom
hash algorithms (as listed in Table 3). If the full-content hash checking fails for the synchronization
of a file, then we will roll back and re-sync the file with the original MD5 chunk fingerprinting.

4.3.3 WebR2sync+. The integration of WebR2sync and the server-side optimization produces
WebR2sync+. The client side of WebR2sync+ is implemented based on the HTML5 File APIs, the
WebSocket protocol, an open-source implementation of SipHash-2-4 [22], and an open-source im-
plementation of SpookyHash [29]. In total, it is written in 1,700 lines of JavaScript code. The server
side of WebR2sync+ is developed based on the node.js framework and a series of C processing
modules. The former (written in 500 lines of node.js code) handles the user requests, and the lat-
ter (written in 1,000 lines of C code) embodies the reverse delta sync process together with the
server-side optimizations.

As illustrated in Figure 17, WebR2sync+ achieves the best performance in terms of sync time
among all web-based delta sync solutions owing to our proposed optimizations. Nevertheless,
although WebR2sync+ has achieved satisfactory results close to rsync, it still has two signifi-
cant drawbacks. First, although using Siphash can effectively reduce the overhead, the collision
probability of Siphash is three orders of magnitude higher than that of MD5, according to our
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Fig. 17. Average sync time of different web-based delta sync approaches for various sizes of file edits under

a simple workload.

Fig. 18. Architectural overview of a typical cloud storage system and the efforts needed to apply WebR2sync+

and WASMrsync+. WebR2sync+ requires reversing the critical workflow between the cilent and the server,

while WASMrsync+ only involves minor in-place component replacements (e.g., replacing MD5 with WASM-

MD5).

measurement results (as listed in Table 3). Once a hash collision occurs during the synchroniza-
tion process, two file chunks with different content may be recognized as the same file chunks,
thus a synchronization error occurs. And the efficiency of WebR2sync+ is partly due to replacing
the heavyweight MD5 with the lightweight Siphash. Thus, WebR2sync+ runs the risk of making
more synchronization errors than other web-based delta sync solutions using MD5, which greatly
damages the system reliability of WebR2sync+. To solve this issue, we have to adopt the afore-
mentioned full-content hash checking and rollback strategy to ensure correct synchronization of
a file. Second, to address the overload issue of the client side, WebR2sync+ reverses the process of
rsync by moving the computation-intensive search and comparison operations to the server side;
meanwhile, it shifts the segmentation and fingerprinting operations to the client side. That is to
say, WebR2sync+ breaks the original workflow of rsync due to the reverse scheme.

Figure 18 depicts the architectural overview of mainstream cloud storage systems (e.g., Drop-
box), which follows the original workflow of rsync (Figure 3). Each client maintains a connection
to a metadata server. The metadata server authenticates each user and stores metadata about the
user’s files, including the list of the user’s files, their sizes and attributes, and pointers to where the
files can be found on the block server. Usually, block servers are built on top of commercial storage
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services such as Amazon S3. If mainstream cloud storage systems want to adopt WebR2sync+, then
they need to spend considerable development cost to refactor their architectures by reversing the
corresponding computing operations between the client side (component ①) and the server side
(component ②) and modifying interfaces between them, which significantly impairs the industrial
applicability of WebR2sync+. In a nutshell, WebR2sync+ is an efficient but not practical web-based
delta sync solution due to the sacrifice of reliability and applicability. Thus, we next explore fea-
sible web-based delta sync schemes that can preserve both reliability and industrial applicability
(WASMrsync and WASMrsync+). For clear comparisons, we also present the corresponding efforts
required for existing cloud storage systems to adopt WASMrsync+ in Figure 18 and will detail them
in Section 6.

5 WEBASSEMBLY-BASED DELTA SYNC: THE FIRST ENDEAVOR

Considering the above two drawbacks of WebR2sync+, we need to rethink how to reduce the
client-side overhead caused by MD5 checksums computation without replacing the safer hashing
algorithm MD5 and breaking the original workflow of rsync (cf. Figure 3). Fortunately, we notice
an emerging technique (or web language) called WebAssembly (WASM) [54] has been attracting
increasing attention in the design of web applications.

5.1 WebAssembly

WASM [54] is a portable binary instruction format (or web programming language) that is efficient
in both encoding size and load time, enabling deployment on the web for client and server applica-
tions. In general, the most important characteristics of WASM include the following four aspects:
(1) Efficient and fast: WASM is designed to be encoded in a size- and load-time-efficient binary
format and aims to be executed at native speed by taking advantage of common hardware capabil-
ities available on a wide range of platforms; (2) Safe: WASM describes a memory-safe, sandboxed
execution environment that may even be implemented inside existing JavaScript virtual machines.
When embedded in the web, WASM will enforce the same-origin and permissions security policies
of the browser. (3) Open and debuggable: WASM is designed to be pretty printed in a textual format
that will be used when viewing the source of WASM modules on the web. (4) Easy-to-apply: WASM
modules can call into and out of the JavaScript context and access browser functionality through
the same Web APIs accessible from JavaScript. Benefiting from the above-mentioned characteris-
tics, WASM can enable web-based applications to enjoy near-native runtime speed while without
requiring significant cloud-size or client-side changes like the native client [25] in a user-friendly
and easy-to-apply manner.

5.2 WASMrsync

This subsection introduces the first workable implementation of WebAssembly-based delta sync
for cloud storage services. Considering the near-native runtime speed and minimal client-side
modification requirements of WASM, we directly adopt WASM in WebRsync with the solution
referred to as WASMrsync.

To enable cloud storage systems to adopt WASMrsync with the minor refactoring of their ar-
chitectures, WASMrsync retains the original workflow of rsync (cf. Figure 3). Observing the ma-
jority of client-side computation overhead is attributed to the calculation of MD5 checksums in
WebRsync (cf. Section 4), WASMrsync improves on WebRsync by directly leveraging WASM to
carry out this operation.

Specifically, following the guidelines of official documents for leveraging WASM [43], we first
reimplement the MD5 checksum calculation in C code. Then, we compile the C source code
to a WASM module by using Emscripten [7], a complete open-source compiler toolchain for
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Fig. 19. A simplified example of running WASM in a download-compile-instantiate manner in JavaScript.

compiling C/C++ source code to a WASM module, and end up with a binary module file—
md5.wasm. According to practical advice [55], to support the future plans to allow WASM modules
to be loaded, WASM must currently be loaded and compiled by JavaScript. To this end, we follow
these three steps: (1) first, we convert the bytes of md5.wasm into a JavaScript datatype Array-

Buffer ; (2) then, we compile the bytes using the asynchronous function WebAssembly.compile,
which returns a Promise Object that resolves to a WebAssembly.Module; (3) at last, we instantiate
the module by running a new WASM API WebAssembly.instantiate passing in a module and any
imports requested by the module. Figure 19 shows a simplified code snippet that does the complete
download-compile-instantiate dance in WASMrsync.

Note that the component of leveraging WASM to calculate MD5 is packaged as a dynamic library
for mainstream cloud storage systems to apply directly. Therefore, mainstream cloud storage sys-
tems do not need to refactor their architectures, but only need to replace the original functional
modules with our encapsulated dynamic libraries, which essentially improve the applicability of
WASMrsync. With the above effort, we end up using the HTML5 APIs and JavaScript “glue” code
to integrate the compiled and loaded md5.wasm into our original system. To find out how much
computation time of MD5 checksums can be reduced through WASM, we perform the calculation
of MD5 checksums in different data chunk sizes (ranging from 8 KB, 16 KB, 32 KB, 64 KB, 128 KB,
256 KB, to 512 KB) by using WASM and JavaScript upon real-world files collected from real-world
cloud storage services [38]. As illustrated in Figure 20, WASM performs the calculation of MD5
checksums almost 1.8 to 5.5 times faster than JavaScript, and the acceleration ratio increases as
the data chunk size increases. Nevertheless, considering that increasing the data chunk size makes
delta sync become coarse-grained and thus requires more sync traffic, we empirically set the data
chunk size to 64 KB to achieve a tradeoff between sync time and sync traffic. We next compare the
performance of WASMrsync, WebRsync, and WebR2sync+ under the simple workload to validate
the effectiveness of this optimization mechanism. As epitomized in Figure 21, WASMrsync stays
between WebRsync and WebR2sync+ in terms of sync time, which is basically within our expec-
tations. More specifically, WASMrsync can outpace WebRsync by 3 to 5 times for every different
type of operation.

Although WASMrsync can significantly mitigate the computation burden at the web client by
leveraging WASM to conduct the most expensive operation—the calculation of MD5 checksums—
there still exists a performance gap between WASMrsync and WebR2sync+, which is shown in
Figure 21. To explore the performance improvement opportunities for WASMrsync, we decompose
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Fig. 20. Average computing time of MD5 by using WASM and JavaScript and the corresponding acceleration

ratio for various sizes of data chunks.

Fig. 21. Average sync time using WASMrsync for various sizes of file edits under a simple workload (in

comparison to WebRsync and WebR2sync+).

Fig. 22. Breakdown of the sync time of WASMrsync and WebR2sync+ for different types of edit operations.

the sync time of WASMrsync and WebR2sync+ into three stages: at the client side, across the
network, and at the server side. Our analysis results, in Figure 22, show that for each type of file
edit operation, the client-side and server-side sync time of WASMrsync is significantly longer than
that of WebR2sync+ (by 4 to 6 and 5 to 8 times, respectively).

6 WASMRSYNC+: WEBASSEMBLY-BASED DELTA SYNC MADE EFFICIENT AND

PRACTICAL

In this section, we present WASMrsync+, the resulting WebAssembly-based practical solution of
supporting delta sync under current web frameworks. As discussed in Section 5, the performance
gap between WASMrsync and WebR2sync+ reveals the need for a more comprehensive solution
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that requires optimization on both the client and server sides. Thus, to bridge this gap, we make
additional two-fold efforts to improve the client-side sync efficiency and devise a mechanism to
mitigate the performance bottleneck at the server side.

6.1 Client-side Optimizations

Devising strategic sync-async code decoupling at the client. By inspecting the execution
flow of WASMrsync, we find that the quasi-asynchronous nature of WASM in rsync has led to
considerable performance degradation. As demonstrated in Figure 3, when the client receives the
checksum list of f from the server, the client first performs chunk search and comparison opera-
tions on f ′ in a byte-by-byte manner on checksums (including rolling and MD5 checksums) and
then generates both the matching tokens and literal bytes. Inevitably, this manner requires us to
implement the chunk search and comparison operations at the client side in a synchronous way.

However, to avoid blocking the main thread that may make the web page unresponsive, WASM
APIs are designed to be asynchronous [55], e.g., WebAssembly.compile introduced in Section 5.
Thus, we have to implement WASMrsync with a quasi-asynchronous strategy, i.e., to implement
the asynchronous WASM API invocations in a synchronous manner using the await/async mech-
anism of JavaScript. Unfortunately, there are overheads associated with running the await/async
method: (1) the current execution context has to be captured; (2) there is a thread transition;
(3) and a state machine is built through which the code runs. Worse still, this await/async prop-
erty of a WASM API invocation is propagated to the wrapping function of the invocation, which
introduces unnecessary overhead for executing even non-WASM code in the wrapping function
and thus severely increases the overall sync time.

We practically overcome this shortcoming through strategic sync-async code decoupling that ex-
tracts the synchronous non-WASM code from asynchronous modules to avoid unnecessary await-
/async overhead. Specifically, we re-examine and modify the system implementation to avoid using
async/await for very short methods and non-WASM exported functions, or having await state-
ments in tight loops (run the whole loop asynchronously instead). And we change the multi-layer
nested callbacks to the single-layer nested callbacks to minimize the workload caused by propa-
gating the aforementioned await/async nature.

Adopting stream compilation in loading WASM modules at the client. As shown in
Figure 19, when leveraging WASM, developers usually need to download a WASM module, com-
pile it, instantiate it, and then use the exported module in JavaScript. For consistency and for the
sake of keeping the main thread free, every operation in the code snippet is designed to be asyn-
chronous. The asynchronous property of WASM APIs offers us an opportunity to process these
operations in parallel for improving the overall loading efficiency. Hence, we manage to adopt
streaming compilation [44] in loading WASM modules to meet this parallelization. Streaming com-

pilation is an emerging web-accelerating technology that allows code to be downloaded while the
browser compiles it.

We embody this adoption by replacing WebAssembly.compile and WebAssembly.instantiate
with the state-of-the-art WASM API—WebAssembly.instantiateStreaming. This WASM API can
compile and instantiate a WASM module directly from a streamed underlying source in one go.
Specifically, by adopting stream compilation, we can compile the md5.wasm module already while
we are still downloading the module bytes. Note that this API has been supported by V8 (JavaScript
engine) [2] and Chrome 61 [1].

To find out the client-side optimizations’ real impacts on the performance of the final product,
we conduct extensive experimental evaluations in Section 6.3 in terms of our proposed metrics. The
experimental results (Section 6.3) show that the client-side optimizations have the most significant
effect on reducing sync time of the final solution.
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Fig. 23. Breakdown of the server-side sync time of WASMrsync and the ratio of construction time to the

total server-side sync time for different large files.

6.2 Server-side Optimizations

Designing Informed In-place File Construction mechanism at the server. By adopting the
client-side optimizations as above, we manage to make WASM more compatible with web-based
delta sync to improve the sync efficiency. After that, when handling large files (≥10 MB), we addi-
tionally notice that WASMrsync+ suffers from the time- and memory-consuming file construction
at the server side. To quantify the proportion of file construction time in the entire server-side
sync time, we perform random append, insert, and cut operations of different edit sizes (ranging
from 1 B, 10 B, 100 B, 1 KB, 10 KB, 100 KB, 1 MB) into different large files (ranging from 10 MB,
20 MB, 40 MB, 60 MB, 80 MB, to 100 MB). These large files are generated to simulate real-world
files. For each large file, we take the average sync time of appending/inserting/cutting different
edit sizes as the final results. According to our measurement results (as exemplified in Figure 23),
for such files, the construction time usually accounts for about 54%–83% of the entire sync time,
and the proportion increases with the file size.

In particular, WASMrsync still follows the algorithm of rsync and may inherit some of the inher-
ent defects of rsync. Thus, to demystify this phenomenon, we carefully investigate the internals
of rsync and find the root cause is that the server side adopts the conventional In-situ Separate

Memory Allocation (ISMA) mechanism to construct the updated file f ′. In detail, when parsing
the “patch” of every newly submitted file chunk, the server needs to (1) reallocate a memory region
that is able to contain both the previous parsed chunk (stored in another memory region) and the
new chunk, (2) copy the parsed chunk data from its memory region to the reallocated one, and
(3) append the new chunk data. This means that the server side needs to perform excessive memory
allocation/copy operations and maintain two memory spaces (Mnew and Mold ) when constructing
an updated file. For example, when the chunk size is set to 64 KB, inserting 1 MB of data into a
100 MB file requires the server side to maintain a total memory space of 201 MB (100 MB for old,
101 MB for new) and perform about 3,156 (2 × 101MB

64K B
) memory allocation/copy operations. For

space-constrained servers, maintaining two memory spaces also significantly limits the number of
concurrent clients supported by them. Further, we note that ISMA is largely associated with a lack
of information about the updated file (i.e., the size of the updated file and the actions to chunks).

Based on the above-mentioned observations and investigations, to reduce the overhead intro-
duced by ISMA, we devise the Informed In-place File Construction (IIFC) mechanism and
deploy this strategy in WASMrsync. The objectives of the IIFC mechanism include: (1) perform-
ing a single incremental memory allocation to prevent the excessive time-consuming memory
allocation/copy operations; and (2) reusing the memory space already occupied by the old file to
eliminate the need for additional memory space when constructing the updated file. To meet the
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Fig. 24. An example of the dependency relationship of chunks and the associated dependency graph.

two optimization objectives, we first modify the client to send the size of the updated file to inform
the server in advance. Thus, the server can conduct a single incremental memory allocation based
on the memory space occupied by the old file according to the informed size of the updated file.
Then, we encode the actions to matched and unmatched file chunks as Copy and Add according
to the chunk searching and comparing results, respectively, and send the encoding information
to the server along with the literal bytes. Based on the encoding information and the literal bytes,
the server copies the unmatched data chunks from their original memory regions to the new ones
and adds the changed data chunks to the new memory regions.

It is extremely challenging to perform the In-place file construction, because we must account for
hazards that arise when conducting aCopy action.Copy not only reads and copies a chunk of a file,
but also overwrites some bytes that may exist in other data chunks. The overwritten chunks cannot
be used in futureCopy actions, because they no longer contain the original data. Figure 24(a) plots
a simple example of file synchronization. The matched chunks will be moved from their original
location (bottom) to their new location (top). To ensure the correctness of sync results, B2 must be
completed before B1 and B3, because the destination of these chunks will corrupt the source for
B2. Since the new B2 occupies the original region of B4, B4 needs to be copied before B2. In the
abstract, we can get the associated dependency graph shown in Figure 24(b).

To undo the hazards and inspired by Figure 24, we modify the workflow of WASMrsync and
embody the IIFC mechanism by taking the following steps: First, after encoding the actions to
chunks of the updated file (Copy or Add) according to the chunk searching and comparing results,
the client buffers Copy and Add actions in memory. For matched chunks, we need to buffer the
source offset and the target offset of them. Unmatched Chunks require an extra field for the length
of chunk data. Thus, we can get the original chunk dependency graph, but there may be some
dependency cycles with regard to Copy actions.

Second, to ensure the correctness of sync results, we need to topologically sort the original
dependency graph and break cycles as they are detected. To this end, we devise a DFS-based
algorithm. The algorithm constructs a directed graph (denoted as G = (N ,E)) in which edges
E = (e1, e2, e3, ...) represent ordering constraints amongCopy actions and nodesN = (n1,n2,n3, ...)
indicate matched chunks. The unmatched chunks are self-describing and require no data from the
old region. Therefore, Add actions need no reordering. A topological sort of the graph determines
an execution order for processing Copy actions at the server. When a total topological ordering
proves impossible because of cycles in the graph, we randomly convert the action to one node in
the cycle from Copy to Add and add the corresponding chunk data explicitly. In the end, we can
get a new chunk dependency tree with no cycles. After the above steps, the client side delivers
the new chunk dependency graph, followed by literal bytes to the server side. Finally, the server
applies Copy or Add actions when receiving the data. The server seeks the given offset to either
copy a matched chunk from its original memory region or insert the unmatched data chunk.
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It is worth mentioning that when handling a file larger than the server’s memory with the IIFC,
we devise a sequential processing strategy. Specifically, once one chunk dependency tree (smaller
than memory) is formed, we write the content of these involved chunks to the new file and free
up memory space in real time. When all the chunk dependency trees are sequentially generated
and written to the new file in the same way, the entire file synchronization is finished.

Here, the side effects of IIFC mainly lie in two aspects. On the one hand, bufferingCopy andAdd
actions consumes additional memory space (usually ranging from several to tens of KB), but it is
much less than Mnew required in traditional rsync for large files (≥10 MB). On the other hand, the
process of detecting and resolving the dependency costs additional time to conduct an analysis of
all Copy actions before transmitting data to the server. Traditional rsync overlaps detecting and
transmitting matching tokens and literal bytes by sending data to the server immediately, while we
have to wait until all Copy actions are found and analyzed before transmitting data. Nevertheless,
this process is usually completed in tens of milliseconds, so the trivial additional sync time is
acceptable, considering the significant reductions in memory usage and sync time.

To figure out the impact expected on the performance of the final product for the server-side
optimization (IIFC) in terms of our proposed metrics, we conduct extensive experimental eval-
uations in Section 6.3. Our experimental results show that the reduction of memory usage and
the increase of service throughput are mainly due to the server-side optimization (i.e., the IIFC
mechanism). The detailed experimental results are analyzed in Section 6.3.

6.3 WASMrsync+: The Final Efficient and Practical Product

The integration of WASMrsync, the client-side optimization, and the server-side optimization cre-
ates WASMrsync+. The client side of WASMrsync+ is implemented based on the HTML5 File
APIs, the WebSocket protocol, and WASM. In total, it is written in 2,200 lines of JavaScript code
and 500 lines of C code. The former deals with the client-side workflow of rsync, and the latter
implements the calculation of MD5 checksums to prepare for adopting WASM. The server side of
WASMrsync+ is developed based on the node.js framework with 1,500 lines of node.js code and
a series of C processing modules with 600 lines of C code for handling the user requests and em-
bodying the server-side optimization (IIFC); its architecture also follows the server architecture of
Dropbox. Similar to other solutions, the web service of WAMrsync+ runs on a VM server rented
from Aliyun ECS, and the file content is hosted on object storage rented from Aliyun OSS [6]. More
details about the server, client, and network configurations have been described in Section 3.3 and
Figure 2.

It is worth recalling that even though mainstream cloud storage systems (i.e., Dropbox) do not
support delta sync in web browsers, they still have web clients. Thus, although WASMrsync+ also
requires deployment at the web client side and the server side, the optimizations of WASMrsync+
including leveraging WASM to calculate MD5 and the implementation of IIFC can all be packaged
as dynamic libraries for mainstream cloud storage systems to directly apply to their web clients and
servers, respectively. As illustrated in Figure 18, mainstream cloud storage systems do not need to
refactor their architectures (i.e., reversing the components ① and ② and modifying interfaces be-
tween them like WebR2sync+), but only need to replace the original functional modules (MD5 and
File Construction (FC)) with our encapsulated dynamic libraries (WASM-MD5 and IIFC), which
essentially improve the applicability of WASMrsync+. Note that, since WASM-MD5 and IIFC are
highly encapsulated JavaScript and C dynamic libraries, they can be easily integrated into these
systems’ web clients and servers by following the conventional way of loading JavaScript mod-
ules and C libraries. To validate the effectiveness of WASMrsync+, we evaluate the performance
of WASMrsync+, in comparison to WebRsync, WebR2sync, WebR2sync+, WASMrsync, and (PC
client-based) rsync under the aforementioned workloads and metrics in Section 3.
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Fig. 25. Average sync time of different delta sync approaches for various sizes of file edits under a simple

workload.

Sync efficiency. We measure the efficiency of WASMrsync+ in terms of the time for completing
the sync. Figure 25 shows the time for syncing against different types of file operations under a
simple workload. We can see that the sync time of WASMrsync+ is substantially shorter than that
of WASMrsync (by 2 to 5 times) and WebRsync (by 13 to 19 times) for every different type of
operation. Note that Figure 25 is plotted with a log scale. In other words, WASMrsync+ outpaces
WebRsync by around an order of magnitude, approaching the speed of WebR2sync+.

Similar to Figure 22, we further break down the sync time of WASMrsync+ into three stages
compared with WebR2sync+ as shown in Figure 26. Comparing Figures 22 and 26, we notice that
the majority of client-side and server-side sync time has been largely decreased. Particularly, the
file construction time at the server side is saved by nearly 3–15 times, which demonstrates the
effectiveness of the IIFC mechanism. This indicates that the computation overheads of the client
and server sides in WASMrsync are substantially reduced in WASMrsync+.

To further explore the respective effects of the client- and server-side optimizations on improv-
ing the sync efficiency of WASMrsync+, we additionally measure the sync time of WASMrsync,
WASMrsync with the client-side optimization (WASMrsync-CO), WASMrsync with the

server-side optimization (WASMrsync-SO), and WASMrsync+. As demonstrated in Figure 27,
the sync time of WASMrsync-CO and WASMrsync-SO is between that of WASMrsync+ and
WASMrsync. Note that Figure 27 is plotted with a log scale. In other words, both the client- and
server-side optimizations can effectively reduce the sync time of WASMrsync. In particular, the
client-side optimization has a more significant effect on reducing the sync time of WASMrsync
compared with the server-side optimization.

Although the time of calculating MD5 can be significantly reduced by using WASM, it is still
about 16%–33% more than that of Siphash according to our measurement results. Meanwhile, even
though the IIFC mechanism can effectively reduce the file construction time of WASMrsyc+, it still
introduces the additional time of detecting and resolving the chunk dependency. Thus, the sync
time of WASMrsync+ is a bit higher (only 10%∼20%) than that of WebRs2sync+. Even though
WASMrsync+ does not outperform WebR2sync+, WASMrsync+ achieves comparable sync time as
WebR2sync+ under the premise of preserving the system reliability and industrial applicability.

Computation overhead. Moreover, we record the client-side and server-side CPU utilizations
in Figures 28 and 29, respectively. At the client side, WebRsync consumes the most CPU re-
sources, while WebR2sync+ consumes the least for shifting the most computation-intensive chunk
search and comparison operations from the client to the server. PC client-based rsync consumes
nearly a half CPU resources as compared to WebRsync. The CPU utilizations of WASMrsync
and WASMrsync+ lie between rsync and WebR2sync+. This is within our expectation, be-
cause WASMrsync and WASMrsync+ perform the most computation-intensive chunk search and
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Fig. 26. Breakdown of the sync time of WASMrsync+ and WebR2sync+ for different types of edit operations.

Fig. 27. Average sync time of different WASM-based delta sync approaches for various sizes of file edits

under a simple workload.

Fig. 28. Average client-side CPU utilization of different delta sync approaches under a simple workload.

comparison operations at the client side for preserving the original workflow of rsync and using
the heavyweight but more reliable checksum function–MD5. Nevertheless, the client-side CPU
utilization of WASMrsync is significantly reduced compared to WebRsync, demonstrating the ef-
fectiveness of adopting WASM at the client side. The client-side CPU utilization of WASMrsync+ is
less than that of WASMrsync (nearly by 10%–20%), which proves the efficacy of our two-fold client-
side optimizations. Owing to the moderate (<40%) CPU utilizations, both the clients of WASMrsync
and WASMrsync+ do not exhibit stagnation, so do WebR2sync and WebR2sync+.

On the server side, WebR2sync consumes the most CPU resources, because the most
computation-intensive chunk search and comparison operations are shifted from the client to the
server. On the contrary, the server-side CPU utilizations of WASMrsync and WASMrsync+ are both
less than that of WebR2sync+, because they do not move the expensive chunk search and compar-
ison operations from the client side to the server side. In particular, WASMrsync+ consumes the
least CPU resources, which also validates the efficacy of our server-side optimizations.
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Fig. 29. Average server-side CPU utilization of different delta sync approaches under a simple workload.

Fig. 30. Sync traffic of different sync approaches for various sizes of file edits under a simple workload.

Sync traffic. Figure 30 illustrates the sync traffic consumed by the different approaches. We can
see that for any type of edit, the sync traffic (between 1 KB and 120 KB) is significantly less than
the average file size (∼1 MB), confirming the power of delta sync in improving the network-level
efficiency of cloud storage services. For the same edit size, the sync traffic of an append operation
is usually less than that of an insert operation, because the former would bring more matching
tokens while fewer literal bytes (refer to Figure 3). Besides, when the edit size is relatively large
(10 KB or 100 KB), a cut operation consumes much less sync traffic than an append/insert operation,
because a cut operation brings only matching tokens but not literal bytes. It is worth mentioning
that although WASMrsync+ spends a small amount of additional traffic to transfer the information
of the dependency graph of matched chunks due to the IIFC mechanism, this is trivial compared
to the improved overall performance of WASMrsync+.

Memory usage. Furthermore, to validate the efficacy of IIFC, we record the memory usages of
all the proposed solutions under heavy workloads (refer to Section 3.2). Considering that the edit
sizes (10 KB–1 MB) are relatively small compared to the file sizes of large files (10 MB–100 MB), for
every large file, we take the average amount of memory space required by various edit sizes as the
final experimental result. As Figure 31 depicted, for any size of large files, with the exception of
WASMrsync+, the memory space required by the server side of these solutions is basically twice
the size of these large files. On the contrary, WASMsync+ only needs to allocate nearly the same
amount of memory as the size of these large files to correctly complete the overall sync process,
which demonstrates the power of the IIFC mechanism. In other words, WASMrsync+ can save
∼50% server-side memory usage compared to other solutions.

Service throughput. Finally, we measure the service throughput of WASMrsync+ in terms of
the number of concurrent clients it can support. In general, as the number of concurrent clients
increases, the main burden imposed on the server comes from the high CPU utilizations in all
cores. When the CPU utilizations on all cores approach 100%, we record the number of concurrent
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Fig. 31. Memory usage of different sync approaches for various sizes of files under a heavy workload.

Fig. 32. Number of concurrent clients supported by a single VM server instance (as a measure of service

throughput) under regular workloads (periodically syncing various sizes of file edits).

clients at that time as the service throughput. As shown in Figure 32, WASMrsync+ can simulta-
neously support 7,600–9,100 web clients’ delta sync using a standard VM server instance under
regular workloads, which is more than WebR2sync+ can support (6,800–8,500). The throughput
of WASMrsync+ is 3–4 times that of WebR2sync/rsync and ∼17 times that of NoRsync. NoRsync
means that no delta sync is used for synchronizing file edits, i.e., directly uploading the entire con-
tent of the edited file to the cloud. Also, we measure the service throughput of each solution under
intensive workloads (which are mixed by the three types of edits; refer to Section 3.2).

The service throughput is affected not only by the file size but also by the number of sub-edits
in the web-based delta sync scenario. Although the average file size in intensive workloads is
23 KB, there are many sub-edits in these involving files, so the CPU utilization of the server can
reach 100%. As illustrated in Figure 33, under the intensive workloads, WebR2sync supports fewer
concurrent users than the rsync scheme. This is reasonable, because WebR2sync has moved more
computational tasks from the client side to the server side. Meanwhile, WebR2sync+ can support
more concurrent users than rsync due to our two-fold server-side optimizations, including exploit-
ing the locality of file edits in chunk search and replacing MD5 with SipHash in chunk comparison.
The experimental result also indicates the effectiveness of our proposed server-side optimizations.

The results in Figure 33 also show that even under the intensive workloads, WASMrsync+ can si-
multaneously support the most concurrent users (about 810 web clients’ delta sync) compared with
other solutions using a single VM server instance, which proves the effectiveness of leveraging
WASM and the corresponding client-side and server-side optimizations. To further clarify the re-
spective effects of the client- and server-side optimizations on increasing the service throughput of
WASMrsync+, we also measure the throughput of WASMrsync with IIFC. As shown in Figures 32
and 33, the service throughput of WASMrsync with IIFC is very close to that of WASMrsync+.
Thus, we can reasonably believe the increase of service throughput of WASMrsync+ is mainly due
to the adoption of the IIFC mechanism.
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Fig. 33. Number of concurrent users supported by a single VM server instance under intensive workloads

(syncing two versions of Linux source trees).

7 CONCLUSION

This article presents our efforts towards supporting efficient and practical delta sync under current
web frameworks. Despite a rich body of delta sync techniques in cloud storage services, practical
delta sync techniques are only available for PC clients and mobile apps, but not web browsers.
To fill in this critical field blank, we first propose a variety of web-based delta sync solutions in
a step-by-step optimization manner. Despite not being acceptable in terms of practicability (i.e.,
reliability, applicability, and usability), they indicate the challenges and optimization opportunities
of supporting efficient and practical web-based delta sync solutions for cloud storage services.

Fortunately, WASM sheds light on how to overcome these challenges. Thereby, we leverage
WASM to develop a preliminary practical WASM-based delta sync solution named WASMrsync.
In practice, we find the inherent natures of WASMrsync lead to great performance degradations.
To this end, we further present WASMrsync+ by adopting the client-side and server-side optimiza-
tions. WASMrsync+ achieves comparable sync efficiency as WebR2sync+ with nearly only a half
of memory usage, but without impairing the practicability. Moreover, WASMrsync+ can simul-
taneously support more web clients’ delta sync than WebR2sync+ using a standard VM server
instance.
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