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Abstract—When applied in high-churn Internet environments, P2P systems face a dilemma: although most participants are too

unstable, a P2P system requires sufficient stable peers to provide satisfactory core services. Thus, determining how to leverage

unstable nodes seems to be the only choice. Our primary idea is to group unstable nodes together in order to form an adequate

number of stable service groups. Focusing on this topic, our main findings are three-fold: 1) A general analytical model to investigate

the grouping process of P2P systems is established, in which the stability-scalability trade-off problem is paid special attention to. 2)

We formalize the target of grouping as the Maximum Stability Grouping (MSG) problem. It proves to be not only NP-hard, but also

infeasible; therefore, we restrict it to a feasible Homogeneous MSG (H-MSG) problem and deduce its optimal solution under the

stochastic model. 3) We propose a homogeneous grouping strategy to fulfill the optimal solution. Comprehensive simulations have

been performed on generated data sets and real-world traces from a P2P storage system and a P2P streaming system. Results show

that our grouping strategy effectively captures the stability-scalability trade-off: besides excellent stability, it gains much higher stable

service capacity, with acceptable loss in scalability.

Index Terms—Peer-to-peer, stability, scalability, grouping, homogeneity, optimization.
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1 INTRODUCTION

ALTHOUGH Peer-to-Peer (P2P) systems are famous for the
accommodation and utilization of numerous unstable

peers (called dwarfs), their core services rely heavily on
stable peers (called giants), which have a large session time
length (stl). For example, KaZaa [1] and eDonkey [2] employ
stable superpeers for peer organizing, file indexing and
searching, and BitTorrent [3] selects stable peers as the
trackers. Besides, as a popular VoIP system, Skype [4]
continuously picks out stable supernodes from its users to
form the “backbone” of voice data streaming. Furthermore,
measurements [5] show that in P2P video streaming
systems, like PPLive [6], around 80 percent of the data
traffic is delivered through less than 10 percent of the
participants (mostly stable peers).

Previous studies [7], [8], [9] indicate that in real-world P2P
systems, most participants are quite unstable (e.g., PCs and
PDAs with session time length < 60 minutes). So, we face a

dilemma now: although most participants are too unstable to serve

as stable peers, a P2P system requires sufficient stable peers to

provide satisfactory core services. Confronted with this dilem-

ma, existing works can be briefly classified into the following

three categories. (A detailed categorization is in Section 2 of

the supplementary file, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.

org/10.1109/TPDS.2011.90. And the background and more

related works can be found in Sections 1 and 3 of the

supplementary file.)

1. GiantOnly. Besides its broad use in unstructured P2P
systems, the GiantOnly strategy is also employed in
some DHT-based schemes, such as OpenDHT [10],
where only giants can play the role of DHT nodes.
Dwarfs are not allowed to enter the DHT, but are
instead treated as clients.

2. TotallyFlat. Despite their substantial difference in
overlay organization, Gnutella [11] and Chord [12]
both construct a Totally Flat world for their partici-
pants. All peers are equal in function, no matter
whether they are giants or dwarfs.

3. StableNeighbor. Since stable peers are usually deficient,
some works try to detour this dilemma by grabbing
more Stable Neighbors for each peer. Godfrey et al. [8]
focus on the issue of selecting a subset of the available
node set as relatively stable neighbors to replace failed
ones. Yeung and Kwok [13] model the neighbor
selection process as a cooperative game so that peers
form stable coalitions with high possibilities.

The motivation of our work is based on the observa-

tion that in P2P systems, the capability of a single dwarf

is negligible, but due to their overwhelming proportion,

the dwarfs are still able to make significant contributions

with their combined efforts—that is, combining several

dwarfs to form a stable service group so as to act like a
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giant. A stable service group refers to a group of dwarfs/
giants that cooperate to provide stable core services for
the whole system. More importantly, the exploration of
dwarf capability seems to be the only choice when
attempting to offer satisfactory core services in high-
churn scenarios with few giants. This highlights three
requirements on our target: 1) we cannot compromise
scalability for stability as GiantOnly; 2) we cannot
compromise stability for scalability as TotallyFlat; and
3) we do not want to play a zero-sum game as
StableNeighbor, but try to provide fundamental optimiza-
tions or guarantees for the performance of core services.

In summation, the major question becomes: in a P2P
system with few giants and high churn, how can we group dwarfs
in order to achieve significantly optimized stability, on the
condition that the system scalability is guaranteed?

Our primary idea is to admit all nodes and group
homogeneous nodes together to form an adequate number of
stable service groups (i.e., grouping dwarf with dwarf, giant
with giant; we defer explaining the reason until Section 2.3).
The inter and intra-group connections are deployed dis-
tinctively, and the number of groups is deliberately tuned to
guarantee the system scalability. Here, we use a simplified
example depicted in Table 1 to illustrate our idea. By
assigning more nodes to a dwarf group and fewer to a giant
group, the dwarf group can survive for a time period equal
to that of its giant counterpart, and thus we can get a
sufficient number of stable service groups.

Our contributions are enumerated as follows:

. A general analytical model to investigate the group-
ing process of P2P systems is established, in which
the stability-scalability trade-off problem is paid
special attention to.

. We formalize the target of grouping as the Maximum
Stability Grouping (MSG) problem. Considering the
intractability and infeasibility of MSG, we restrict it to
a feasible Homogeneous Maximum Stability Grouping
(H-MSG) problem and prove the optimal solution (it
is also tractable) to H-MSG under the stochastic

model. Both literatures and our measurements have
indicated that the stochastic model holds.

. We propose a homogeneous grouping strategy to
fulfill the optimal solution. Comprehensive simula-
tions have been performed on generated data sets
and real-world traces from a P2P storage system
(AmazingStore [14]) and a P2P streaming system
(CoolFish [15]). Results show that our grouping
strategy effectively captures the stability-scalability
trade-off: besides excellent stability, it gains much
higher stable service capacity, with acceptable loss
in scalability.

A final note is that we strongly feel our grouping model
has its applicability in general distributed systems. In this
model, most notations and the MSG/H-MSG problem also
exist in a distributed system with heterogeneous members
and high churn, and the optimal solution under the
stochastic model mainly holds.

2 GROUPING MODEL

2.1 Notations and Preliminaries

Consider a P2P system S with N nodes (each node has a
probability to be online in a given Period). We want to group
these N nodes into m disjoint groups: G1; G2; . . . ; Gm. T is
the random variable of group session time length, and �k
denotes Gk’s stl. We use � as the random variable of group
stability. A group Gk’s stability  k is mostly determined by
its stl (�k). Basically,  k ¼ �k

Period . The basic property of a
group is that several nodes in this group can provide
continuous and stable service for a period, so we want to
make each  k as high as possible. Period is usually set to
24 hours for a practical system.

A group Gk’s service capability Ck is considered as the
time-weighted average of its members’ service capabilities
rather than the sum, because all the members of Gk actually
provide the same service functions as one single node.
Grouping several dwarfs can just enhance their integrated
stability, but cannot increase their integrated service cap-
ability. For example, four dwarfs in Fig. 1 are combined to
form one stable group. The group acts like a giant with
533 GB storage and 683 Kbps (or 300 Kbps) bandwidth.
533 ¼ 6

24 � 300þ 4
24 � 100þ 8

24 � 800þ 6
24 � 700; since in each over-

lapped period, only the dwarf with the strongest capability
online is in service. Gk’s bandwidth is scenario oriented: in a
common scenario, it is calculated like Gk’s storage; but in a
bandwidth-sensitive scenario, it is minfB1; B2; B3; B4g ¼
300 Kbps, e.g., if Gk acts as a “backbone” supernode in
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TABLE 1
Giant Group versus Dwarf Group

Fig. 1. A group of four dwarfs acts like a giant.



Skype, it can only report 300 Kbps to the Skype system

because any temporary shortage in bandwidth would cause

voice streaming interruption. It should be noted that a

group’s service capability can be measured from different

metrics according to specific application scenarios, e.g.,

bandwidth (in P2P media streaming systems), CPU/mem-

ory (in P2P computing systems), storage (in P2P storage

systems), search efficiency (in general P2P systems), and so

on. Detailed discussion on Ck is in Section 6.3 of the

supplementary file, which can be found on the Computer

Society Digital Library.
Table 2 is a reference of the basic notations used in this

paper. Each of them will be exhaustively explained at their

first appearance.
The scalability of a P2P system S depends on 1) the

number of groups m, and 2) the average service capability

of all groups. It is formulated as

ScalabilityðSÞ ¼ m � IEðCÞ ¼ m � C ¼
Xm
k¼1

Ck: ð1Þ

Obviously, ScalabilityðSÞ is maximized only when m ¼ N .

In this extreme case, there exists no overlapped online time

period among the members of a group. In fact, in this case,

each group is a single node, so every node fully contributes

its service capability to the system.

The stability of a P2P system S is somehow more
complicated. Our grouping strategy makes the improve-
ment in group stability seem like (in fact not) a zero-sum
game. The only way for one group to become more stable is
to grab some members from other groups, which jeopar-
dizes their stability. Therefore, we need to equalize the
stability levels across all groups to maximize the overall
stability from a system perspective (see Section 6.4 of the
supplementary file for better and easier understanding,
which can be found on the Computer Society Digital
Library). As a result, if we define StabilityðSÞ ¼
� ¼ 1

m

Pm
k¼1  k, the simple example depicted in Fig. 2

clearly indicates its irrationality. For the same participants
P1-P7 with stability 0.1-0.7, the two grouping schemes S1

and S2 both divide them into m ¼ 4 groups. Table 3
presents the stability of S1 and S2 under the “Exclusive”
and “Independent” conditions, respectively. Here, “Exclu-
sive” means that the members of a group are exclusive in
session time, while “Independent” means that they are
independent in session time. For example, in the third line
of Table 3,  1ðS1Þ ¼ 1� ð1� 0:1Þ � ð1� 0:7Þ ¼ 0:73.

The above example demonstrates that StabilityðSÞ
depends mainly on V arð�Þ, rather than �. In essence, what
we want is an equalized system consisting of m groups with
similar stability, rather than a polarized system where some
groups are much more stable than others. Therefore, we
define StabilityðSÞ as

StabilityðSÞ ¼ 1

V arð�Þ ¼
m� 1Pm

k¼1ð k ��Þ2
: ð2Þ

Equations (1) and (2) put forward a scalability-stability
trade-off problem [16] for any grouping strategy. A small m
leads to high stability because each group is composed of
more dwarfs in average, and thus the stability is very high.
However, a small m represents poor scalability because too
few groups provide services. The discussion on a big m is
alike. Therefore, our next step is to decide a proper m.

2.2 Condition: Guaranteed Scalability

For a P2P system S, in Section 2.1, we have defined
ScalabilityðSÞ ¼ m � C ¼

Pm
k¼1 Ck. A group’s service cap-

ability Ck can be measured from different metrics like
bandwidth, CPU/memory, storage, search efficiency, and
so on. Without loss of generality, here we use search
efficiency as the metric of Ck since search efficiency is
usually regarded as the most important (network-related)
property of P2P systems. When each node of S sends a
search request, the total message number with grouping
must be no more than that without grouping. This can be
formulated as a specific case of (1): ScalabilityðSÞ ¼Pm

k¼1 Ck ¼
Pm

k¼1ðjGkj � 1
Avg search msg#Þ ¼ N � 1

Avg search msg# .
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TABLE 2
Basic Notations

Fig. 2. Two grouping schemes S1 and S2 for the same participants. (a) S1

and (b) S2.

TABLE 3
Stability of S1 and S2 in Fig. 2



Notably, we can still use bandwidth, CPU/memory,
storage, etc., as the metric of Ck, and the corresponding
discussion can be found in Section 6.3 of the supplementary
file, which can be found on the Computer Society Digital
Library. Whatever metric we choose, any grouping strategy
has its fundamental condition: it must guarantee that its system
scalability holds on the same level as the original system without
grouping.

As unstructured and DHT systems differ greatly in
operation mechanism, their scalability guarantees are
discussed separately below.

2.2.1 For Unstructured Systems

We take Gnutella as the representative of unstructured P2P
systems. Consider a Gnutella network S1 composed of N
nodes with the average node degree ¼ d and flooding search
radius ¼ TTL hops. If we group S1 into a new system S2,
which is composed of m groups, most edges in S1 would
become inter-group edges in S2, and the remaining edges in
S1 would become intra-group edges in S2. This can cause
two problems: 1) the average inter-group degree dG is too
large, and thus the groups of S2 are overdensely connected;
and 2) the intra-group edges are too sparse, and thus a
group may be disconnected. Therefore, we randomly trim
the inter-group edges from S2 (make sure S2 is connected all
along) until dG is reduced close to d, so that S2 has the same
edge density as a common Gnutella network. Besides, for
each group of S2, we randomly add intra-group edges until
this group is connected. A demo of the final state of S2 is
shown in Fig. 3:

To guarantee the scalability of S2, we make

ScalabilityðS1Þ � ScalabilityðS2Þ;

that is N � 1
Avg search msg#1 � N � 1

Avg search msg#2 ,

Avg search msg#2 � Avg search msg#1: ð3Þ

Suppose TTL’ is the inter-group flooding radius of S2.
Inside a group Gk, the number of messages is almost jGkj
because the intra-group flooding can usually reach all
members. So, (3) is transformed to

dG
TTL0 �N

m
� dTTL: ð4Þ

Since dG � d, (4) is approximately

m � N

dTTL�TTL0
; or

N

m
� dTTL�TTL0 : ð5Þ

In the Gnutella network, usually d lies in 3-5 and TTL � 7.
TTL� TTL0 may be 1, 2, or 3.

2.2.2 For DHT Systems

We take Chord as the representative of DHT systems.
Likewise, we group a Chord system S1 into the new system
S2, which is composed of m groups. Since the members of a
group share the same ID in DHT, for a group Gk, we
randomly choose the ID of one member as the ID of Gk. The
inter-group edges are organized in the same way as Chord.
As mentioned in Section 2.2.1, for each group of S2, we
randomly add intra-group edges until this group is con-
nected.

Equation (3) still holds for the grouping of DHT systems,
but is formulated as

OðlogmÞ þN
m
� OðlogNÞ: ð6Þ

Equation (6) is a transcendental equation, so we just
construct a feasible solution. Obviously, m 2 Oð N

logNÞ is one
feasible solution, because

OðlogmÞ þN
m
2 O log

N

logN

� �
þOðlogNÞ

2 OðlogNÞ �Oðlog logNÞ þOðlogNÞ 2 OðlogNÞ:

In fact, m 2 Oð N
logNÞ means the average group size

2 OðlogNÞ.

2.3 Target: Maximum Stability Grouping Problem

We denote the set of nodes that will join in the system
during a sufficiently long period by S ¼ fn1; n2; . . . ; nLg.
Assume each node ni’s join time ni:join and leave time
ni:leave are priori knowledge. (Of course, this assumption is
impractical, and we will address this problem later.) The
number of groups m is determined in Section 2.2. Our target
is formalized as the following MSG problem:

Definition 1 (Maximum Stability Grouping Problem).
Instance. A given m, and S ¼ fn1; n2; . . . ; nLg, where each
node ni’s join time ni:join and leave time ni:leave are known.

Solution. A partition of S into m disjoint groups
G1; G2; . . . ; Gm.

Measure to minimize. V arð�Þ ¼ 1
m�1

Pm
k¼1ð k ��Þ2.

Then, we can prove the following theorem (the proof is
in Section 4 of the supplementary file, which can be found
on the Computer Society Digital Library):

Theorem 1. With a nontrivial m � 1, MSG is NP-hard.

Besides intractability (NP-hard), MSG is also infeasible in
that it entails the priori knowledge (i.e., prediction) of each
node’s join and leave time, which is impractical in real P2P
systems. Thereby, we look into this issue from another
perspective. Our approach deploys homogeneity more
restrictively so as to reduce MSG into a feasible optimization
problem, i.e., the Homogeneous Maximum Stability Grouping
problem, where only the distributions of stl—Dð:Þ, and
number of arrivals—v:ð:Þ need to be known. We combine
homogeneous nodes that have the same or similar stls to form a
group under the stochastic model, that is to say, grouping dwarf
with dwarf, giant with giant, and supposing the peers’ churn
(join, stl, etc.) mainly follows a stochastic process.
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Fig. 3. A grouping demo of the unstructured P2P system. The dotted
blue arrow illustrates the message flow of a search operation.



We believe that it is invariably impossible for each group
to involve one powerful giant because of its rarity in most
high-churn scenarios. In this sense, the idea of grouping
giants and dwarfs in a mixed way, is greatly invalidated.
Such an idea will also induce low efficiency when the
dramatic asymmetry in node capability is taken into
account. For instance, bandwidth asymmetry prevents giant
bandwidth from being fully leveraged when it commu-
nicates with dwarfs. And due to huge diversity in CPU/
memory or storage, the departure of a giant may make it
hard for the remaining dwarfs to take over its duty. For
instance, no PC can take charge of a supercomputer in either
computing or storage capability, except when these PCs
cooperate in a quite specialized way. Besides, the homo-
geneous grouping strategy is the most efficient in band-
width-sensitive scenarios (e.g., P2P media streaming),
which would be explained in Section 6.3 of the supplemen-
tary file, which can be found on the Computer Society
Digital Library. Furthermore, the users (nodes) of each ISP
usually exhibit certain homogeneity, especially in band-
width, so our homogeneous grouping strategy has the
potential to facilitate topology awareness, as well. In a word,
it is both reasonable and efficient, at least in high-churn
scenarios, to group nodes homogeneous in terms of stls.

To solve the H-MSG problem, as shown in Fig. 4, the stl
axis is divided into m intervals, i.e., ½y0; y1Þ, ½y1; y2Þ; . . . ,
½ym�1; ymÞ, where y0 ¼ 0 and ym ¼ þ1, and the nodes
whose stls are in the same interval are destined to the same
group. The target is to minimize V arð�Þ. This solution
seems to somehow jeopardize system stability by prohibit-
ing any overlap of different stl ranges, but it should be
reasonable, as mentioned above. The detailed design of our
proposed grouping strategy is described in Section 6 of the
supplementary file, which can be found on the Computer
Society Digital Library. And the distributed algorithm can
be found in Section 9 of the supplementary file, which can
be found on the Computer Society Digital Library.

2.4 Optimal Solution under the Stochastic Model

In this section, we first indicate that Dð:Þ and v:ð:Þ
approximately follow a stochastic process though both

literatures and our measurements, and then address the
optimal solution of H-MSG.

2.4.1 Stochastic Model

It is widely assumed in literature that node arrival (v:ð:Þ) is a
memoryless and stochastic process: often a Poisson process
[17]. Additionally, it is confirmed in [16] and [18] that the
distribution of node stl (Dð:Þ) exhibits a predictable
stochastic pattern: often, but not always, a Zipf-like pattern
[7], [9]. Generally, it is possible to figure out an approximate
stochastic distribution of Dð:Þ and v:ð:Þ by monitoring node
session history, although such information for a single node
is hard to model. Below, we will show how to achieve this
by taking the AmazingStore trace as an example. A brief
description of the AmazingStore trace is in Section 7.2 of the
supplementary file, which can be found on the Computer
Society Digital Library.

Figs. 5 and 6 illustrate that both the numbers of online
users and joining users in AmazingStore exhibit obvious
periodical distribution. Users behave very similarly at the
same time everyday. Although it is difficult to summarize
Fig. 6 with a formula, we can easily approximate the
stochastic distribution of v:ð:Þ through sampling and
interpolation in Fig. 6.

The session time pattern of all users in AmazingStore in
three months is depicted in Fig. 7. This long-tail pattern
deviates greatly from the well-known Zipf-like (or says
power-law) distribution. Instead, as shown in Fig. 8, the
stretched exponential (SE) distribution [19] fits the session
time pattern well. Thereby, the stochastic distribution of
Dð:Þ is obtained.

Now, we are sure that the session time of a node can be
predicted by monitoring node session history. However, in
an open P2P environment, such information for a single node
is hard to get although the session time distribution of all
nodes can be easily got. Then, the problem is: how to estimate
the session time of a node when it joins the system? As a
matter of fact, it is impossible to accurately estimate such
information when a new node joins, because we know

LI ET AL.: STABILITY-OPTIMAL GROUPING STRATEGY OF PEER-TO-PEER SYSTEMS 2083

Fig. 4. Demo of the H-MSG problem.

Fig. 5. Number of online users in AmazingStore.

Fig. 6. Number of joining users in AmazingStore.

Fig. 7. Session time pattern of all users in AmazingStore in three
months.



nothing about it. Our solution is to estimate the session time of
a new node as the average session time of existing nodes. As
time goes, the information of a new node would be learned,
and then we can allocate it into a more proper group. Refer to
Section 10 of the supplementary file for the performance
evaluation, which can be found on the Computer Society
Digital Library.

2.4.2 Optimal Solution of H-MSG

To facilitate the analysis, we sample a slot st large enough
so that the system size (i.e., the number of nodes online) is
relatively stable (e.g., it slightly fluctuates around an
estimated value) at that time. Then, the stability of a group
Gk at slot st is

 k ¼ 1� P ð�kðstÞÞ; ð7Þ

where �kðstÞ denotes the event that Gk is empty at the st-
th slot.

Theorem 2 indicates that the H-MSG problem is actually
a feasible optimization problem, so long as Dð:Þ and v:ð:Þ
follow a stochastic model.

Theorem 2.  k is the function of yk�1 and yk.

The proof is in Section 5 of the supplementary file, which
can be found on the Computer Society Digital Library.

Following (2), (7), and Theorem 2, we can obtain
Corollary 1:

Corollary 1. The H-MSG problem can be reduced to a feasible
optimization problem where y1; y2; . . . ; ym�1 need to be
determined to minimize V arð�Þ, so long as Dð:Þ and v:ð:Þ
follow a stochastic model.

The above optimization problem can be calculated with
the Matlab (version R2001a) nonlinear constrained optimi-
zation solver fmincon(.) and some other related solvers. Its
computation complexity is polynomial for two reasons:
first, for the infinite summations

Pþ1
i¼0 ð� � �Þ, the upper

bound þ1 is in fact a limited (usually small) integer
because the number of node arrivals in a time slot is limited.
It is impossible that infinite nodes arrive at the P2P system
in a time slot. Instead, usually at any time slot, there is at
most one node joining in a group Gk. Second, fmincon(.) is
implemented as a numerical algorithm with user-config-
ured precision and number of iterations in Matlab, and thus
its computation complexity is also polynomial. To sum up,
we have the following conclusion:

Corollary 2. The optimal solution to the H-MSG problem under
the stochastic model is both feasible and tractable.

3 PERFORMANCE EVALUATION

3.1 Environment Setup

Three data sets, including one generated data set and two
real-world system traces, as described in Section 7 of the
supplementary file, which can be found on the Computer
Society Digital Library, are used to evaluate the perfor-
mance of our proposed grouping strategy.

3.2 Metrics

We evaluate our grouping strategy and the related works
mainly from two aspects: stability and scalability. Churn rate
is defined to measure stability. And we evaluate scalability
from two orthogonal perspectives: search efficiency and system
storage capacity. Additionally, we use system stable storage to
measure the scalability of P2P storage systems (like
AmazingStore), and system stable bandwidth to measure the
scalability of bandwidth-sensitive P2P streaming systems
(like CoolFish). Furthermore, we measure the maintenance
overhead of related systems, using the generated data set.
Finally, we evaluate the load balance situation of our proposed
grouping strategy, using the AmazingStore trace. All the
above-mentioned metrics are elaborated in Section 7.4 of the
supplementary file, which can be found on the Computer
Society Digital Library.

3.3 Results on Generated Data Set

We first generate a demo data set with N ¼ 200 nodes to
illustrate how our grouping strategy works, with m ¼
N
logN ¼ 26. As shown in Figs. 9 and 10, in accordance with
their stl intervals, all groups are sorted in ascending order
and indexed accordingly (ID). Just as expected, the curve of
the number of nodes in each group is skewed, which means
that a dwarf group has to involve more nodes than its giant
counterpart to maintain a comparable stability.

Then, we generate a data set with N ¼ 1;000 nodes and
m ¼ 100 groups. Fig. 11 demonstrates that, as we expected,
TotallyFlat (Chord/Gnutella) is far more dynamic than
Grouping. Out of our expectation, GiantOnly is also more
dynamic than Grouping. Why do giants have more churns
than our dwarf groups? The reason lies in that choosing
m ¼ 100 giants from N ¼ 1;000 nodes is too difficult when
the node stl follows the exponential distribution (refer to
Section 7.1 of the supplementary file, which can be found
on the Computer Society Digital Library). In fact, among
the 100 “giants,” most are not as stable as their dwarf-group
counterparts, thus leading to our unexpected observation.

To contrast Grouping with Gnutella, Chord, and
GiantOnly in search efficiency, we assume the target file
locates on each group member uniformly. Let each node/
group send a search query and record the average routing
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Fig. 8. Stretched Exponential distribution fits the session time pattern
well.

Fig. 9. Each group’s stability and their mean value.



message number in Fig. 13. For Gnutella and Grouping-

Gnutella, the bars show the message hop (TTL), while the

tagged numbers in the error bars show the message

number involved in a flooding search. For Chord, Group-

ing-Chord, and GiantOnly, the routing hop denotes the

search message cost. They are consistent with our evalua-

tions in Section 6.2 of the supplementary file, which can be

found on the Computer Society Digital Library.
Fig. 12 explicates that Grouping’s system storage

capacity is perceivably greater than that of GiantOnly by

almost three times. Nevertheless, it is still less than that of

Gnutella/Chord by about 20 percent, which is the compen-

sation that Grouping has to pay.
To compare Grouping with Gnutella, Chord, and

GiantOnly as to maintenance overhead, we let the main-

tenance period be equal to the churn unit time (100 seconds).

Their respective maintenance overheads are illustrated in

Fig. 14. Gnutella and Chord only have inter-group over-

head, where one node can be seen as one group. Obviously,

Gnutella bears much more maintenance overhead than

others. The inter-group overhead exceeds the intra-group

overhead in Grouping-Gnutella, but the case is just opposite

in Grouping-Chord. GiantOnly has less intra-group over-

head, because each group member only sends its state to the

group leader (a giant) in a period. The inter-group

maintenance mechanism of GiantOnly is assumed to be

TTL flooding. Section 6.1 of the supplementary file contains

the corresponding theoretical analysis, which can be found

on the Computer Society Digital Library.

3.4 Results on AmazingStore Trace

As mentioned in Section 7.2 of the supplementary file,
which can be found on the Computer Society Digital
Library, 4,854 AmazingStore nodes are grouped into 396
groups, with the average group stability � � 0:6. � � 0:6
appears less than enough, but in fact is satisfactory when
considering that all AmazingStore users come from China
colleges. College students and teachers usually live a
regular life, for example, being active from 8:00-22:00 and
asleep from 23:00-7:00. AmazingStore always has much
fewer users at night than in daytime, which can be proved
from our real-time user log page [20].

Seen from Figs. 15 and 16, after grouping, both the churn
rate and churn ratio of AmazingStore have greatly
decreased. Even the highest churn ratio of AmazingStore-
grouping is smaller than the lowest churn ratio of
AmazingStore.

Fig. 17 shows that the system storage capacity of
AmazingStore-grouping is less than that of AmazingStore,
especially at the “hot” hours. During the other nonhot
hours, they perform alike. As a P2P storage system, what is
more important for AmazingStore is the stable storage
capacity in Fig. 18. We change the stability (�) requirement
to compare their stable storage capacities. Accordingly,
when we choose a higher stability requirement, the number
of groups m should be reduced. In all the four cases,
AmazingStore possesses less than 30 GB stable storage,
which is much lower than that of AmazingStore-grouping.

3.5 Results on CoolFish Trace

Since the CoolFish trace is divided into nine subtraces and
each subtrace is processed individually, we only depict the
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Fig. 10. Number of nodes in each group to gain the maximum stability.

Fig. 11. Evolution of churn rate.

Fig. 12. Evolution of system storage capacity.

Fig. 13. Search efficiency comparison.

Fig. 14. Maintenance overhead comparison.

Fig. 15. Churn rates of AmazingStore.



churn rates (in Fig. 19) and churn ratios (in Fig. 20) of the

subtrace on Apr. 13. The other eight subtraces are generally

similar. In Fig. 20, there exist two exceptional churn times

when no group is online. This mainly results from our

server code updates.
System stable bandwidth is critical to P2P streaming

systems because of their sensitivity to bandwidth vibration.

Fig. 21 compares the system stable bandwidths of CoolFish

and CoolFish-grouping each day. Here, “stable” means a

group/node can provide stable bandwidth in more than

60 percent of time per day. Since CoolFish has few users at

night, 60 percent is close to the ratio of daytime over a

whole day. Clearly, the system stable bandwidth of Cool-

Fish is trivial compared to that of CoolFish-grouping.

3.6 Results Summarization

Refer to Section 7.5 of the supplementary file, which can be

found on the Computer Society Digital Library.

4 CONCLUSION

Motivated by the dilemma of stable peers in P2P systems, in
this paper, we investigate how to group unstable nodes
together in order to form sufficient stable service groups. A
general grouping model is established and a homogeneous
grouping strategy is proposed to acquire optimal stability
with guaranteed scalability. Simulations on generated data
sets and real-world traces reveal that our grouping strategy
derives a better stability-scalability trade-off: besides ex-
cellent stability, it gains much higher stable service capacity,
with acceptable loss in scalability.
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