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1 BACKGROUND

In recent years, Peer-to-Peer (P2P) systems have be-
come the base infrastructure of many Internet ap-
plications. To explore Internet edge resources, peers
(clients) contact each other directly, whereas in con-
ventional networking systems, clients only communi-
cate with servers. P2P systems can be generally cat-
egorized into two kinds of architecture: unstructured
(e.g., Gnutella [1], KaZaa [2], and eDonkey [3]), and
structured (e.g., Chord [4], Pastry [5], Tapestry [6],
and Kademlia [7]). The structured architecture is also
known as the distributed hash table (DHT).

The unstructured architecture is widely deployed
for its simplicity of implementation and loose organi-
zation, and thus further adopted by most commercial
P2P media streaming systems (e.g., Skype [8], PPLive
[9], PPStream [10], and UUSee [11]). However, its
flooding-based search method does not scale well as
the load on each node grows dramatically with the
search radius (often called TTL) and the system size.
Therefore, DHT is presented as an elegant architecture
which seems to possess high scalability and search
efficiency. Currently, DHT usually acts as an auxiliary
facility of unstructured P2P systems. For example, the
Kademlia DHT has been applied in BitTorrent [12] and
eDonkey.

2 EXISTING WORK CATEGORIZATION

Existing works can be roughly classified into the fol-
lowing categories:

1) GiantOnly. Besides its broad use in unstructured
P2P systems like KaZaa, eDonkey, and Skype,
the GiantOnly strategy is also employed in some
DHT-based deployment schemes, like OpenDHT
[13], where only giants can play the role of DHT
nodes. Dwarfs are not allowed to enter the DHT,
but are instead treated as clients. In essence,
GiantOnly compromises scalability for stability,
which is reasonable in OpenDHT as OpenDHT
is deployed on Planetlab [14], an open platform
with sufficient giants.

2) TotallyFlat. Despite their substantial difference in
overlay organization, Gnutella and Chord both
construct a Totally Flat world for their partic-
ipants. That is to say, all peers are equal in

function, no matter whether they are giants or
dwarfs. Contrary to GiantOnly, TotallyFlat com-
promises stability for scalability. As any dwarf
can provide core services (e.g., data indexing,
message routing, and overlay maintenance), To-
tallyFlat behaves poorly when facing high-churn
network environments.

3) StableNeighbor. Since stable peers are usually de-
ficient, some works try to detour this dilemma
by grabbing more Stable Neighbors for each peer.
Godfrey et al. [15] focus on the issue of selecting
a subset of the available node-set as relatively
stable neighbors to replace failed ones. Yeung
and Kowk [16] model the neighbor selection
process as a cooperative game so that peers form
stable coalitions with high possibilities. Never-
theless, the StableNeighbor strategy is more-or-
less a zero-sum game, so it is not an essential
way to get out of our dilemma. Stable peers do
not grow in number or quality, but just shuffle
among the neighborhoods of peers.

3 RELATED WORK

We have briefly reviewed related works in Section
2 in three categories: 1) GiantOnly; 2) TotallyFlat; 3)
StableNeighbor. Here, we discuss them more and some
other issues relevant to the grouping strategy, stability,
scalability, etc.

OpenDHT [13] is the representative of the Gi-
antOnly strategy. It runs a DHT on Planetlab nodes
[14] to offer services to unstable nodes that play the
role of clients. Maintenance cost is greatly reduced
since Planetlab nodes are workstations or servers that
are always in session, viz., far more stable than typical
P2P peers. Wang et al. [17] delve further into this
area of study and obtained a threshold to precisely
decide how much stability is required for a node to be
accepted by the DHT.

For the TotallyFlat strategy, since unstable nodes are
unavoidably included, data replication is a commonly
used way to enhance data availability. Blake et al. [18]
make a comprehensive study on several conflicting
system metrics, i.e., stability, scalability, dynamism,
and bandwidth consumption. A simple model is pro-
posed, from which they draw the conclusion that it is
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invariable to use a large amount of cross-system band-
width for good stability and scalability in highly dy-
namic systems. Our work does not intend to enhance
system stability by consuming extra communication
bandwidth. Instead, we improve system stability by
organizing nodes in a better way.

The StableNeighbor strategy investigates how to
properly detect and replace failed neighbors with sta-
ble neighbors, in order to enhance system stability.
Godfrey et al [15] focus on the issue of selecting
a relatively stable subset of the available nodes as
neighbors. They pay particular attention to a range of
different node selection strategies and finally conclude
that the simple strategy of picking a uniform-random
replacement performs surprisingly well. Henceforth,
simply adding some randomization is an easy and
effective way to increase stability. Leonard et al. [19]
study the churn resilience of various random graphs
under various user lifetime models. They examine
two metrics: 1) isolation time, and 2) isolation time
probability, of the models with and without neighbor
recovery, respectively. Similar to [15], a node is deemed
to be isolated whenever all of its neighbors have failed.
On the contrary, we investigate how long a node or
group itself survives to describe the system stability.
Leonard et al. derive from theoretical analysis that
the k-regular graph exhibits the highest level of fault
resilience, though maintaining the k-regular property
would incur considerable bandwidth consumption.

Hierarchical P2P protocols are invariably the focus
of researchers, owing to their practicality and feasibil-
ity in our real world. Among them, Gnutella v0.6 [20]
used to be the most prevalent one, yet in recent years,
it seems to be more attractive to deploy the top-level
overlay in a DHT manner (similar to the server overlay
in OpenDHT [13]). From a real trace of PPLive, Wang
et al. [21] found out that plenty of stable nodes exist
(but only in a per-snapshot view). Thus, they propose
a tiered overlay design for P2P video streaming, with
stable nodes being organized into a tier-1 backbone to
serve tier-2 nodes.

The intra-group organization structure deserves fur-
ther research. Some analytical models have been
recently derived to shed light on various struc-
tures from various perspectives. For instance, Zoels
et al. [22] compare three intra-group structures:
1) single-connection intra-group structure, 2) fully-
meshed intra-group structure, and 3) DHT intra-group
structure. They draw the conclusion that the first one
is superior to the other two in the sense of traffic
cost. Our work differs from [22] in that we cluster
homogeneous nodes rather than group giants and
dwarfs together, so the single-connection structure
(which needs a giant in each group) is not applicable
to our work. The fully-meshed structure constructs
a highly resilient intra-group communication scheme,
but would bring too much traffic cost to maintain
O( 12 |G|

2) intra-group connections. The DHT structure

is too complicated to implement inside a group. More-
over, because most groups are small in size, organizing
the few nodes in a group into a DHT is really unwor-
thy. In our paper, we adopt a loosely-meshed structure
to organize intra-group nodes. This scheme possesses
reasonable resilience, and meanwhile, avoids the enor-
mous traffic cost of the fully-meshed structure and the
complication of the DHT structure.

4 PROOF OF THEOREM 1
Theorem 1. With a non-trivial m ≥ 1, MSG is NP-hard.

Proof: We complete the proof by reducing the
Minimum Sum of Squares (MSS) problem to MSG in
polynomial time. The MSS problem presented below
has proven to be NP-hard [23]:

Definition 1 (Minimum Sum of Squares Problem).
Instance: A finite set A, the size s(a) ∈ Z+ for each a ∈ A,
and an integer K ≥ 2.
Solution: A partition of A into K disjoint sets
A1, A2, . . . , AK .

Measure to minimize:
K∑
i=1

(
∑

a∈Ai

s(a))2.

Some trivial differences in terminology are first
pointed out: S, m, and Gk in MSG correspond to
A, K, and Ai in MSS, respectively. We will reduce
MSS to an auxiliary problem MSG’ being the same

to MSG, except that its measure is E(Ψ) = 1
m

m∑
k=1

ψk.

Algorithm 1 exhibits how to derive τk from ni ∈ Gk in
polynomial time. Thus, we conclude that the algorithm
to deduce ψk from Gk can be reduced from

∑
a∈Ai

s(a) in

polynomial time by delicately tuning s(.). Up to now
it is possible to reduce MSS to MSG’, thus MSG’ is NP-
hard. Furthermore, Var(Ψ) = E(Ψ2) − E2(Ψ) is more
complicated than E(Ψ), therefore, it is easy to prove
by the reduction that MSG is NP-hard.

5 PROOF OF THEOREM 2
The stability of a group Gk at slot st is

ψk = 1− P(ϕk(st)), (1)

where ϕk(st) denotes the event that Gk is empty at the
st-th slot.

Theorem 2. ψk is the function of yk−1 and yk.

Proof: Gk is empty at the st-th slot if and only if,
at the st-th slot, the sessions that started before (called
old sessions) have ended and no new nodes join Gk

at that time:

P(ϕk(st)) = P(no new nodes entered Gk at st)·
P(all old sessions of Gk have ended before st)

= I(st, k) · II(st, k). (2)
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Algorithm 1: Get τk from Gk

Data: Gk = {n1, n2, . . . , n|Gk|}
Result: τk

1 begin
2 Put Gk into array a[2|Gk|] in ascending order;
3 Suppose a[0] is nt.joinT ime;
4 s⇐ 0;
5 pivot⇐ 0;
6 Push a[0] into a stack;
7 while pivot < 2|Gk| − 1 do
8 for i = 1 to 2|Gk| − 1 do
9 if a[i] is nt.leaveT ime then

10 s⇐ s+nt.leaveT ime−nt.joinT ime;
11 pivot⇐ i+ 1;
12 break;

13 if a[i] is a joining time then
14 Push;
15 else
16 Pop;

17 τk ⇐ s;

Node arrivals are considered independent, so

I(st, k) =
+∞∑
i=0

vst(i)
(
1−

(
D(yk)−D(yk−1)

))i

. (3)

The meaning of vst(i) and D(yk) can be found in
Table 2 of the TPDS manuscript.

The old sessions of Gk are considered to have started
at any slot from 0 to st − 1 independently, and have
ended before st. So,

II(st, k) = 1−
st−1∑
x=0

P(at least one session of Gk started

at x ∧ its stl ≥ st− x) = 1−
st−1∑
x=0

III(st, k, x). (4)

The number of node arrivals at the st-th slot theo-
retically range from 0 to +∞. Thus,

III(st, k, x) =
+∞∑
i=0

P(Jk(i, x) ∧ (Sk(i, st− x)))

=

+∞∑
i=0

P(Jk(i, x)) · P(Sk(i, st− x)), (5)

where Jk(i, x) is the event that i nodes join Gk at the
x-th slot, and Sk(i, st−x) is the event that at least one
node out of these i nodes has the stl ≥ st− x.

Following Bernoulli distribution,

P(Jk(i, x)) =
+∞∑
j=i

vx(j)

(
j

i

)
Pi(1− P)j−i, (6)

where P = D(yk)−D(yk−1).

Due to the independence of each stl,

P(Sk(i, st− x)) = 1− (1− P(Sk(1, st− x)))i, (7)

and as Gk’s stl belongs to [yk−1, yk),

P(Sk(1, z)) =


1 z < yk−1
D(z)−D(yk−1)
D(yk)−D(yk−1)

yk−1 ≤ z ≤ yk
0 yk < z

(8)

Equations (1)-(8) complete the proof.

6 GROUPING STRATEGY DESIGN

In this section, we describe the design details of our
proposed grouping strategy. For either an unstruc-
tured system or a DHT system, each group has a
single overlay ID which is shared among its members.
Each group corresponds to one overlay unit (e.g., a
Gnutella node or a Chord node). The establishment
and maintenance of inter-group links are based on
the original overlay specifications. In a group Gk, at
any time there is at most one group leader, which
acts as a proxy/gate of this group. More specifically,
the group leader is responsible for maintaining inter-
group links, inter-group message routing, and intra-
group coordinating.

Online members of a group are organized into
a loosely-meshed structure with only one condition:
they must be connected. In fact, there exist at least four
methods (i.e., single-connection, fully-meshed, loosely-
meshed, and DHT) to organize the intra-group nodes,
which has been discussed in Section 3. Each member
of group Gk maintains a member list of Gk. When
an offline member gets online, its member list will
be partially out of date, and it can contact any online
member for the latest list. Besides, the member list is
critical in checking or enhancing Gk’s connectivity.

Since the intra-group nodes are loosely organized,
the feasible intra-group routing methods are flooding,
random walk, k-random walk, etc. In Section 2.2 of
the TPDS manuscript, we have deduced that the av-
erage group size is N

m ≤ dTTL−TTL′
(for unstructured

systems) or N
m ∈ O(logN) (for DHT systems). In either

case, the group size is usually small or quite limited.
Therefore, we adopt the flooding method for intra-
group routing for its simplicity and resilience. Because
the group size is relatively small, the message cost of
intra-group flooding is in O(Nm ) and the corresponding
flooding radius (TTL) is in fact unnecessary.

6.1 Maintenance
In a group Gk, each node periodically floods its state
information (including its inter-group routing table)
into the group for intra-group maintenance. So, the
members of Gk have a nearly consistent view of the
group state. Usually, the online member with the
strongest capability (measured in stl, bandwidth, stor-
age, or other metrics) takes the role of group leader,
and then notifies the other online members of Gk.
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If the function of Gk is to provide bandwidth relay
or computing capability, each member only needs to
store the same service software. If the function of Gk is
to provide data storage, data should be replicated or
erasure-coded among the members, and the specific
choice is up to the system designer. Besides, group
leaders periodically exchange and update their routing
table information, just as common nodes in Gnutella
or Chord do.

Suppose we group a Gnutella system into m groups
in the way in Section 2.2.1 of the TPDS manuscript.
For a group Gk, in a maintenance period, each of
its online members floods its state information to the
others, and the leader of Gk exchanges its routing table
information with some other group leaders. Suppose
Gk currently contains nk online members, and the
inter-group degree is a constant dG. Then, the main-
tenance message cost for Gk in a period is around
nk · (nk − 1) + dG

TTL′
. The maintenance overhead

analysis of Chord grouping is alike.
When a new node n joins in the system S for the first

time, n contacts the bootstrap node (usually a server)
to find the member of which group has the most
similar stl with n. For our homogeneous grouping
strategy, this is quite easy because any member in one
group can represent the stl status of this group. Almost
every P2P system contains a bootstrap node, so we
do not add extra facilities. If n chooses Gk to join
in, Gk’s capability and stability would be improved.
But, this may be harmful for the overall stability of S
since Var(S) would be increased. We propose a simple
solution to this problem. For a group Gk with the
original size s, when s < |Gk| < 2s, it is tolerable;
when |Gk| ≥ 2s, Gk is divided into two groups, with
each containing s nodes. How to decide the group size
s is described in Section 2.2 and Section 2.4.2 of the
TPDS manuscript.

It is too difficult to judge whether a node has left
the system forever. If a node n has left for i days, we
decrease its stl to 1

i . So, a permanent leave just means
the stl falls below a threshold very close to 0. When
more than half of Gk’s members are considered to have
died (i.e., left forever), Gk would not be able to play
the role of a stable service group. Then, Gk is merged
to Gk−1 or Gk+1.

We group a P2P system when its user number is rela-
tively stable. The number of users N fluctuates slightly,
that is, the number of fully new users mainly offsets the
number of dead users. At each time slot, many nodes
arrive and many nodes leave, but few nodes are newly
joining or permanently leaving. This is the reason why
the above-mentioned join and leave events scarcely
happen, and thus would not significantly degrade
the performance of our grouping strategy. Notably,
our proposed grouping strategy is not a static design,
because it only demands that the system should have
a relatively stable user group, rather than stable on-
line users. To our knowledge, most practical systems,

including our AmazingStore and CoolFish, possess a
relatively stable user group at present.

Even when facing an open P2P system, where the
user number is quite unstable (fluctuates sharply), our
grouping strategy still works. The grouping manager
recollects all nodes’ information and then regroups
them at intervals. Surely this operation would incur
extra overhead as discussed above, but it is the best
choice for performance consideration. Refer to Section
10 for simulation results.

6.2 Search

In unstructured P2P systems, a search query is firstly
sent from the query initiator (Q) to the group leader
(L). On receiving the query, L firstly sends it to
the other members of its group, and then forwards
it to the neighboring groups (their group leaders)
through inter-group links. Likewise, the group leader
of each neighboring group forwards the query to its
group members and neighboring groups. The inter-
group flooding radius is TTL′, a small integer. As
a result, the message cost for a query is in O(Nm ·
dTTL′

)=O(dTTL−TTL′ · dTTL′
)=O(dTTL). The mean-

ing of d and TTL is in Section 2.2.1 of the TPDS
manuscript.

In DHT systems, (the index of) any data object is
stored in a determinate group. On receiving a query
request from one group member, the group leader
L just forwards the query to the next group leader
as a routing hop in DHT. After O(logm) hops, the
query arrives at its destined group Gd. Finally, the
group leader of Gd floods the query to the other
members of Gd, and the member with the matched
object replies directly to the query initiator Q. As a
result, the message cost for a query is in O(logm+ N

m ).
Since m ∈ O( N

logN ), O(logm+ N
m ) = O(logN).

6.3 Discussions on Ck

A group’s service capability Ck can be measured
from different metrics. In Section 2.1 of the TPDS
manuscript, we have defined Scalability(S) = m ·C =
m∑

k=1

Ck, and Ck is considered as the time-weighted

average of Gk’s members’ capabilities.
CPU/memory is the most important metric in P2P

computing systems, like SETI@home [24] and the
GPU project [25]. For a group Gk composed of nodes
n1, n2, · · · , ng , the average of C(n1), C(n2), · · · , C(ng)
is a proper estimation of Ck, because computing is
usually a delay tolerant issue. C(i) denotes the capa-
bility of node i.

However, the above estimation method is not suit-
able for bandwidth. Bandwidth is critical to P2P media
streaming systems (like Skype and PPLive), which
are sensitive to bandwidth variation. In Fig. 2 of
the TPDS manuscript, the bandwidths of the four
dwarfs are 500Kbps (n1), 300Kbps (n2), 1Mbps (n3),
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and 700Kbps (n4), respectively. Their time-weighted
average bandwidth is 683Kbps. If 683Kbps is taken as
Ck, the Skype system Gk may be assigned to undertake
more than 600Kbps media streams. Obviously, when
n1 or n2 is in service, Gk is totally unable to carry
a 600Kbps stream, and thus most streams across Gk

will degrade greatly in the quality of service or even
break off. Consequently, min{C(n1), C(n2), · · · , C(ng)}
is a reasonable estimation of Ck when bandwidth is
the metric. Node bandwidth can be approximately
assumed to be proportional to its stl. This assump-
tion is supported by the common observation in P2P
systems: a stable server-style peer usually has high
bandwidth, while an unstable client-style peer usually
has relatively low bandwidth. Thus, in this situation, our
homogeneous grouping strategy is the most efficient since
min{C(n1), C(n2), · · · , C(ng)} is close to their average.

The estimation method of storage lies between those
of CPU/memory and bandwidth. Still using Fig. 2 of
the TPDS manuscript as the example, the storage of
the four dwarfs are 300GB (n1), 100GB (n2), 800GB
(n3), and 700GB (n4), respectively. Their time-weighted
average storage is 533GB. If 533GB is taken as Ck in
a P2P storage system [26], [27], it is all right most
of the time because a P2P storage system rarely fills
in its peers’ storage with more than half. Even if n1
is in service and its remaining storage cannot meet
the requirement, it can simply reject the request and
inform the requester to find a new group for storage.
The storage process is always time consuming, so the
users can tolerate a rejection and redirection in most
situations.

6.4 Demo of Our Definition of Stability
Our explanation of system stability in Section 2.1 of
the TPDS manuscript was brief and abstract, lacking
concrete description. Here, we use a demo metaphor
which compares our idea to another more familiar
scenario, in hopes of better and easier understanding
of our definition of stability.

Suppose we want to operate 100 web sites, and
we have 500 servers to support these web sites. One
server can only support one web site. Suppose each
server can only run for 6 hours per day. Then the node
stability is 6

24 = 0.25. We do not know when they fail,
and they fail independently. Surely, it is impossible to
build a perfect system where every web site has high
stability. A natural idea (egalitarianism) is to uniformly
allocate 500 servers to 100 web sites, with each web site
supported by 5 servers. Then each web site is expected
to have the same stability: ψ = 1− (1− 0.25)5 = 0.763.
For a certain web site (says A), you may feel this
group stability (0.763) is not satisfactory, and then the
only way to improve ψ(A) is grabbing a server from
another web site (says B). Then, ψ(A)′ = 1 − (1 −
0.25)6 = 0.822, but ψ(B)′ = 1 − (1 − 0.25)4 = 0.684.
The gain in ψ(A) is 0.822 − 0.763 = 0.059, while the
loss in ψ(B) is 0.763− 0.684 = 0.079. Obviously, as to

the whole system, the loss is larger than the gain. If A
grabs more servers from B, the loss will be much larger
than the gain. This simple example indicates that the
natural idea (egalitarianism) is in fact the best idea.
The symbol of egalitarianism is the minimum variance
(zero in this example). This is why we define the
system stability as inverse proportional to the system
variance.

7 DATA SETS, METRICS, AND RESULTS
SUMMARIZATION

7.1 Generated data set

One time slot is set as one (simulation) second. The
number of node arrivals at each second follows the
same Poisson distribution:

vt(i) = e−λ · λ
i

i!
, (9)

where λ = N
Period , which means N

Period nodes enter
the simulation system per second on average. Refer to
Table 2 of the TPDS manuscript for the meanings of
N and Period.

Previous literatures [28], [29] observe that the stl
of human-based P2P systems conforms to the heavy-
tailed (i.e., Pareto) distribution, yet other systems con-
sisting of non-human devices (e.g., software agents)
exhibit exponential distribution behaviors. The latter
usually exhibits much more churn than the former.
Thus, our simulation uses the second one:

D(y) = 1− e−
1
η y, (10)

in order to simulate a high-churn scenario with η =
100. That implies the expected stl is 100 seconds,
and 63.2% of nodes survive less than 100 seconds.
We also discard stls being more than 1, 000 seconds
(1 − e−1000/100 ≈ 0.99995) and set Period = 1000
seconds. The system is simulated to run long enough
(10, 000 seconds) to collect sufficient data. Here “sec-
ond” is the simulation second rather than real time.
Our simulation tool for the generated data set is
implemented as a discrete time event generator, and an
event is generated or triggered per simulation second.
For convenience, we can simply take 1000 simulation
seconds as 24 hours in real life.

We compare the performances of our grouping strat-
egy (Grouping), the GiantOnly strategy (GiantOnly),
and the TotallyFlat strategy (Gnutella and Chord, re-
spectively). Grouping is run in Matlab R2010a as an
optimization problem (the fmincon(.) function), which
determines y1, y2, . . . , ym to minimize Var(Ψ), and
nodes are clustered according to the resultant group-
ing. The optimization error is 10−20 and the number of
optimization iterations is 3600. The number of nodes
N is set to 1000, for N=1000 is in fact the compu-
tation limit in our desktop (Intel E4400 CPU@2GHz,
2GB DDR). For DHT systems (GiantOnly, Chord, and
Grouping-Chord) we set m = N

logN = 1000
log 1000 ≈ 100;
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for unstructured P2P systems (Gnutella and Grouping-
Gnutella), we set d = 4, TTL = 5, and TTL′ = 3 (they
are the common configurations in existing systems).
m ≥ N

dTTL−TTL′ = 1000
45−3 = 62.5. For the convenience

of comparison, for unstructured systems we also set
m = 100.

GiantOnly works like OpenDHT [13]. It is simulated
as follows: When the system is pretty stable, the top
m active nodes in terms of predicted remaining stl are
deemed as giants and serve as the DHT peers. From
that moment to the end, whenever a DHT peer ends
its session, the node outside the DHT with the largest
remaining stl is selected into the DHT, in order to keep
the DHT size (m) constant.

7.2 AmazingStore trace

AmazingStore [26] is a P2P storage system deployed in
the CERNET [30]. It mainly provides user file sharing
and user data online backup (the so-called “network
disk”). Its overlay is organized by using an enhanced
Kademlia DHT. Each AmazingStore user is enforced to
preserve 1GB local disk space for system-wide storage,
which means every AmazingStore user has the same
storage capacity. We traced all the users’ join and leave
activity over the course of three months, from Jan. 1,
2010 to Mar. 31, 2010. In total, N = 4854 users have
been recorded. Their average stl is 1.815 hours per day
( 1.81524 = 0.075643).

In the AmazingStore trace, the node arrivals and stls
do not accurately follow the Poisson or exponential
distributions mentioned above. Instead, they exhibit
great “day-night” difference: At night there are always
few online nodes. Thus, we use discrete vt(i) and
D(y) values obtained from the trace to simulate the
continuous values. For example, if we know D(y1)
and D(y2), D(y′) (y′ ∈ [y1, y2)) can be evaluated as
the linear interpolation:

D(y′) =
y′ ·D(y2) + y2 ·D(y1)− y1 ·D(y2)− y′ ·D(y1)

y2 − y1
.

Because N = 4854 is too large for the computation
from Equation (2) to (8), we carefully examine the∑+∞

i=0 in Equations (3) and (5) and
∑+∞

j=i in Equa-
tion (6) to reduce their computation complexity. In
Equations (3) and (5), according to our observations
of AmazingStore, i is usually 0, 1, or 2. The situation
that more than 2 nodes join in a group Gk at a specific
time st scarcely happens. Therefore,

∑+∞
i=0 is approxi-

mated by
∑2

i=0. Furthermore,
∑+∞

j=i in Equation (6) is
approximated by

∑2
j=i.

Utilizing the above approximations, our grouping
strategy divides these 4854 users into m = N

logN = 396
groups. Then, we compare the performance of Amaz-
ingStore and AmazingStore-grouping (i.e., the new
AmazingStore scheme after grouping) by employing
the real trace.

7.3 CoolFish trace

CoolFish [31] is mainly deployed in the CSTNet [32]
for P2P live/VoD streaming. Different from Amaz-
ingStore, CoolFish is an anonymous system, that is,
CoolFish users do not need to register an account for
use. So, we can only trace the IP address, join and leave
time, and the stable bandwidth of a session. Here,
“stable” means the session comes into its stable status.
Because it is impossible to identify which sessions
belong to the same user, we assume each session
corresponds to a unique user and restricts the trace
period to within 24 hours.

The trace is divided into 9 disjoint sub-traces, corre-
sponding to Apr. 7, 2010 - Apr. 15, 2010, respectively.
The number of nodes contained in each sub-trace
ranges from 246 to 351. Our grouping strategy is
performed on each sub-trace individually.

7.4 Metrics

We evaluate our grouping strategy and the related
works mainly from two aspects: stability and scala-
bility.

Churn rate is defined to measure stability. It is the
number of dynamic or offline nodes/groups per churn
unit. A churn unit is set at 100 seconds for generated
data sets, and 600 seconds for AmazingStore/CoolFish
traces. For a group, the intra-group node dynamics is
not a churn, but the state of the group is changed. We
also use churn ratio (churn rate / number of nodes or
groups) to describe stability more clearly.

We evaluate scalability from two orthogonal per-
spectives: search efficiency and system storage capacity.
The search efficiency denotes the average number of
messages cost in a search. For generated data sets, a
node’s storage capacity is set proportional to its stl,
but the proportionality factor is variable. Specifically,
for a node n, its storage capacity C(n) = α · τn,
where α ∈ [0.5, 2.0]. The system storage capacity is
the summation of the online nodes’/groups’ storage
capacities.

Additionally, we further use system stable stor-
age to measure the scalability of P2P storage sys-
tems (like AmazingStore), and system stable band-
width to measure the scalability of bandwidth-
sensitive P2P streaming systems (like CoolFish). Sys-
tem stable storage/bandwidth denotes the summation
of the storages/bandwidths provided by sufficiently
stable (determined according to specific scenarios)
nodes/groups. As explained in Section 6.3, for a
stable group Gk composed of nodes n1, n2, · · · , ng ,
S(Gk) ≈ the average of {S(n1), S(n2), · · · , S(ng)},
while B(Gk) = min{B(n1), B(n2), · · · , B(ng)}. S()
means storage and B() means bandwidth.

Furthermore, we measure the maintenance overhead of
various relevant systems, using the generated data set.
Maintenance overhead presents the average number
of messages cost in a churn unit for maintaining the



7

system states (e.g., routing table, grouping informa-
tion, and so on). The maintenance mechanism of our
grouping strategy is described in Section 6.1.

Finally, we evaluate the load balance situation of our
proposed grouping strategy, using the AmazingStore
trace. The detailed evaluation is in the following sec-
tion.

7.5 Results Summarization
By using our grouping strategy, the performance eval-
uations in the TPDS manuscript can be summarized
in four aspects:

1) Stability: Both the churn rate and churn ratio are
greatly reduced on the generated data set and
two real-world traces.

2) Scalability: Both the search efficiency and storage
capacity bear a compromise, but the loss is ac-
ceptable.

3) Stable service capacity: AmazingStore gains much
higher stable storage capacity, and CoolFish
gains much higher stable bandwidth capacity.

4) Maintenance overhead: The maintenance overhead
of grouping is less than that of TotallyFlat
(Gnutella/Chord), but is slightly more than that
of GiantOnly.

8 LOAD BALANCE EVALUATION

Fig. 1 and Fig. 2 depict the storage load balance sit-
uation of AmazingStore and AmazingStore-grouping,
respectively. The storage load is sorted in ascending
order. Clearly, our grouping strategy greatly improves
the load balance situation of AmazingStore. In Fig. 1,
most nodes store very little while a minority of nodes
store a majority of data. But, in Fig. 2, the storage of
most groups lies between 400 MB and 600 MB.
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9 DISTRIBUTED ALGORITHM

Our proposed grouping strategy in the TPDS
manuscript is a centralized mechanism which collects
statistic information from all peers, and then designs
a global grouping plan. This mechanism brings heavy
burden to the central manager, which limits the system
scale it can take charge of. A distributed mecha-
nism can overcome this problem, but its performance
may degrade to some extent. When the user number

N is too large, a proper distributed algorithm for
our grouping strategy would be like “divide-and-
conquer”. All users are divided into several domains
according to their affiliated ISPs, ASes (Autonomous
System), or some other metrics, and then each domain
elects a local server responsible for grouping.

We evaluate the performance of the distributed al-
gorithm using the AmazingStore trace. The centralized
algorithm divided N = 4854 nodes into m = 396
groups. The distributed algorithm uniformly divides
all nodes into 5 domains, with each domain containing
about 970 nodes. The most stable node in each domain
acts like the local server for grouping. From Fig. 3,
Fig. 4, and Fig. 5, we discover that both the grouping
stability and scalability of the distributed algorithm
degrade obviously, compared with those of the cen-
tralized algorithm (see Fig. 15, Fig. 16, and Fig. 17 of
the TPDS manuscript).
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Fig. 3. Churn rates
of AmazingStore and
AmazingStore-grouping,
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Fig. 5. System storage capacities of AmazingStore and
AmazingStore-grouping, with distributed algorithm.

10 PERFORMANCE IN AN OPEN SYSTEMS

In an open P2P environment, the session time (stl)
of a newly joining node is hard to get although the
session time distribution of all nodes can be easily
got. Moreover, the total user number (N ) may be quite
unstable (fluctuate sharply). Then the problem is how
to deal with such an open system. In fact, when a new
node joins the system, it is impossible to accurately
estimate its session time. Our solution is to estimate
the session time of a new node as the average session
time of existing nodes. As time goes, the information
of this new node would be learnt, and then we can
allocate it into a more proper group. As to the sharp
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fluctuation in user number, our solution is to recollect
all nodes’ information and then regroup them at inter-
vals. The above solutions would incur extra overhead
as discussed in Section 6.1, but it is a simple and
correct choice for performance consideration. In this
section, we evaluate the corresponding performance
through trace-driven simulations.

We still use the AmazingStore trace as described in
Section 7.2. This trace involves 4854 nodes in three
months. To simulate an open P2P system, assume the
open-AmazingStore system scales from the initial state
composed of 1000 nodes. In each subsequent week, 300
new nodes join the system. Because we know nothing
about the newly joining nodes (no prediction), we
estimate their session time as the average session time
of existing nodes, and use these inaccurate information
to regroup the system. After a new node joins, its
session time is gradually learnt from its session history.

We compare the performance of our proposed
grouping strategy under different situations: 1) no
prediction of node stl, and 2) with prediction of node
stl. The results are illustrated in Fig. 6 and Fig. 7.
Without prediction of new nodes’ stl, our grouping
strategy performs slightly worse in Ψ and Var(Ψ), but
the performance degradation is mainly acceptable.
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