
Challenges, Designs, and Performances of
Large-Scale Open-P2SP Content Distribution

Zhenhua Li, Yan Huang, Gang Liu, Fuchen Wang, Yunhao Liu, Senior Member, IEEE,

Zhi-Li Zhang, Fellow, IEEE, and Yafei Dai, Member, IEEE

Abstract—Content distribution on today’s Internet operates primarily in two modes: server-based and peer-to-peer (P2P). To leverage

the advantages of both modes while circumventing their key limitations, a third mode: peer-to-server/peer (P2SP) has emerged in

recent years. Although P2SP can provide efficient hybrid server-P2P content distribution, P2SP generally works in a closed manner by

only utilizing its private owned servers to accelerate its private organized peer swarms. Consequently, P2SP still has its limitations in

both content abundance and server bandwidth. To this end, the fourth mode (or says a generalized mode of P2SP) has appeared as

“open-P2SP” that integrates various third-party servers, contents, and data transfer protocols all over the Internet into a large, open,

and federated P2SP platform. In this paper, based on a large-scale commercial open-P2SP system named “QQXuanfeng” [1], we

investigate the key challenging problems, practical designs and real-world performances of open-P2SP. Such “white-box” study of

open-P2SP provides solid experiences and helpful heuristics to the designers of similar systems.

Index Terms—Internet, content distribution, server based, peer-to-peer, P2SP, open-P2SP

Ç

1 INTRODUCTION

1.1 Peer-to-Server/Peer

CONTENT distribution on today’s Internet operates
primarily in two modes: 1) server-based (see Fig. 1a)

and 2) peer-to-peer (P2P) (see Fig. 1b). Both modes have
their unique characteristics and accompanying disadvan-
tages (as described in Section 1 of the supplementary file,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2012.252). To leverage the advantages of both modes
while circumventing their key limitations, a third mode: 3)
peer-to-server/peer (P2SP) (see Fig. 1c) (e.g., [2], [3], [4], [5],
[6], [7], [8], [9], [10]) has emerged in recent years. As
depicted in Fig. 1c, P2SP usually utilizes a private owned
cloud (or server cluster) as well as a number of peer
swarms for content distribution. A peer swarm starts by
obtaining a content seed from the cloud, and subsequently,
peers within the swarm can exchange data among

themselves via a private designed P2P protocol. Compared
to the server-based mode, P2SP incurs far lower infra-
structure and network bandwidth costs. Meanwhile, P2SP
enhances the working efficiency of P2P by providing extra
server bandwidth to those peer swarms who do not have
adequate download bandwidth among them.

Although P2SP can provide efficient hybrid server-P2P

content distribution with moderate server bandwidth, P2SP

generally works in a closed manner by only utilizing its

private owned servers to accelerate its private organized

peer swarms. Consequently, P2SP still has its limitations in

both content abundance and server bandwidth. First, for

copyright and storage reasons, a P2SP system only provides

a small subset of Internet contents, so its users often have

to resort to other web servers, P2P/P2SP systems for

contents—a quite inconvenient process. Second, due to the

high dynamics of peers, it is quite possible that the server

bandwidth of a P2SP system cannot satisfy its users’

requirements when the user scale increases suddenly and

dramatically [6].

1.2 Open Peer-to-Server/Peer

To this end, the fourth mode (or says a generalized mode of

P2SP) has appeared as in Fig. 1d “open-P2SP” (e.g., Xunlei

[11], QQXuanfeng [1], Flashget [12], and Orbit [13]), which

integrates various third-party servers, contents, and data

transfer protocols all over the Internet into a large, open,

and federated P2SP platform as shown in Fig. 1d. The

advantages of open-P2SP are mainly fourfold.

. First, open-P2SP continuously tracks and indexes
ubiquitous downloadable contents in third-party ser-
vers all over the Internet, so as to allow end users to
search and quickly find contents, and meanwhile
enables peer nodes that are interested in the same
content to find each other and form an open and larger

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2013 2181

. Z. Li is with the School of EECS, Peking University, the School of Software
and TNLIST, Tsinghua University, 156 Chengfu Road, Beijing 100084,
China. E-mail: lzh@net.pku.edu.cn.

. Y. Huang and F. Wang are with the Tencent Research, and the Baidu
Antivirus, 690 Bibo Road, Shanghai 201203, China.
E-mail: {galehuang, futurewang}@qq.com.

. G. Liu is with the Tencent Research, 1801 Hongmei Road, Shanghai
200233, China. E-mail: sinbadliu@qq.com.

. Y. Liu is with the School of Software and TNLIST, Tsinghua University,
156 Chengfu Road, Beijing 100084, China, and the Hong Kong University
of Science and Technology. E-mail: liu@cse.ust.hk.

. Z.-L. Zhang is with the School of EECS, University of Minnesota, 200
Union Street SE, Minneapolis, MN 55416. E-mail: zhzhang@cs.umn.edu.

. Y. Dai is with the School of EECS, Peking University, Natural Science
Building No. 1, Beijing 100871, China. E-mail: dyf@pku.edu.cn.

Manuscript received 7 May 2012; revised 30 July 2012; accepted 14 August
2012; published online 24 August 2012.
Recommended for acceptance by K. Li.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-05-0447.
Digital Object Identifier no. 10.1109/TPDS.2012.252.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

peer swarm. Downloadable contents mainly refer to
videos, audios, documents, software, and so forth.

. Second, open-P2SP dynamically directs peer
swarms—especially those that do not have adequate
download bandwidth among them—to retrieve data
from appropriate third-party servers for download
acceleration. Since there are usually a huge number
(typically millions) of servers involved in an open-
P2SP system, it is resilient to small-scale/localized
upsurge of user requirements.

. Third, by intelligently scheduling peers’ data re-
quests to appropriate third-party servers, open-P2SP
also facilitates load-balancing among the involved
servers while avoiding overloading a specific server.

. Finally, building an open-P2SP system does not
require enormous storage servers (for storing con-
tents) or upload bandwidth (for uploading data to
peers), but merely requires a light-weight “monitor-
ing cluster” (see Fig. 1d) for tracking servers and
scheduling peer swarms. For instance, we have
implemented such a monitoring cluster (named
“QQXuanfeng” [1]1) by using only 53 commodity
servers. QQXuanfeng tracks over 1 million servers
and serves around 5 million peers every day.

1.3 Challenges of Open-P2SP

Despite the above advantages, an open-P2SP system
involves far more complicated problems than a conven-
tional P2SP system. The major problem of designing a
conventional P2SP system is handling the peer dynamics
and properly allocating server bandwidth to peer swarms,
while designing an open-P2SP system (e.g., QQXuanfeng)
should further deal with the following key challenges:

1. Handling server and content dynamics. As for conven-
tional P2SP, servers and their affiliated contents
are usually stable and controllable so that its
designers can focus on handling the inevitable peer
dynamics. However, open-P2SP involves various
third-party servers and contents with unpredictable
dynamics—the involved servers never notify
QQXuanfeng of their join, leave or content change.

2. Limited utilization of server bandwidth. A conventional
P2SP system can fully utilize its server bandwidth

but an open-P2SP system cannot. The extra bandwidth
burden posed on an involved server by QQXuanfeng
should be within a certain limit; otherwise, the
original service offered by the server may be inter-
fered. Still worse, QQXuanfeng has no knowledge of
the original bandwidth of a server spent in its original
service, which further complicates such “limited
utilization.”

3. Differentiated acceleration of peer swarms. Due to the
limited utilization of server bandwidth, QQXuanfeng
can hardly accelerate all its peer swarms to possess
high download bandwidth. Thereby, the only choice
of QQXuanfeng is to design proper differentiated
acceleration strategies according to the specific
requirements of different peer swarms.

4. Bringing extra benefit to server providers. Even if the
extra bandwidth burden directed by QQXuanfeng is
always restricted within a proper limit, server
providers may still be reluctant to support open-
P2SP if they cannot obtain extra benefit from extra
bandwidth contribution.

1.4 Solutions of QQXuanfeng

Each above-mentioned problem is highly challenging as to a
large-scale real-world open-P2SP system. As a matter of fact,
in the past several years (since the birth of QQXuanfeng) we
have (tried hard but) never figured out a perfect solution to
any problem. Instead, our methodology is to find a moderate

and practical solution to each problem based on comprehen-
sive measurements. Specifically, our proposed solutions are
briefly described as follows:

1. To handle server and content dynamics, we build a
content crawler and a content validator. The content
crawler continuously crawls content links (URLs) by
traversing on third-party servers and receiving user
reported novel links. Meanwhile, the content validator
constantly validates the user reported invalid links
by checking them on the Internet.

2. Sampling measurements indicate the original band-
width utilization (“OBU”) of an involved server
usually stays below 60 percent. Thus as to each
server, the extra bandwidth utilization (“EBU”) direc-
ted by QQXuanfeng had better be controlled within
40 percent (¼ 1� 60%). Specifically, QQXuanfeng
periodically collects users’ reports to calculate the

2182 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2013

Fig. 1. General evolution of Internet content distribution modes: (a) server based, (b) P2P, (c) P2SP, and (d) Open-P2SP. “XFPP” (Xuanfeng P2P
Protocol) is a special P2P protocol designed for QQXuanfeng clients. There should be numerous XFPP swarms, BT (BitTorrent) swarms, eMule
swarms, and so on, while we only draw one swarm for each kind.

1. In the remainder of this paper, we also use “QQXuanfeng” as the
name of the corresponding open-P2SP system when the context is clear.

EBU of each involved server. If the EBU of a server S
exceeds 40 percent, QQXuanfeng will notify a part of
the users served by S to stop their data download
from S.

3. Although every user of QQXuanfeng hopes to
achieve his best user experience, through compre-
hensive measurements we discover that a user
usually has his basic expectation for the download
rate. Therefore, peer swarms are classified into three
categories according to their real-time download
rates and data supply demand conditions: 1) hungry
swarms, 2) potentially hungry swarms, and 3) high-
demand swarms. Different categories of peer swarms
correspond to differentiated acceleration strategies
so that each user can have a download rate at least
above his basic expectation.

4. For a server provider, the two most important
benefit metrics are its page view (PV) [14] and paid-
to-click (PTC) [15]. At present, we are fostering
benefit collaborations between QQXuanfeng and
server providers from both perspectives of PV and
PTC, to encourage more server providers to support
QQXuanfeng.

Over the past several years (from the first client version
released in 2007 to the 3.9 client version released in 2012),
QQXuanfeng has gained over 120 million accumulated
users and supports most mainstream data transfer protocols
like HTTP, FTP, RTSP, BitTorrent, eMule, and so forth.
Currently, it schedules around 5 million peers to retrieve
data in petabytes from over 1 million servers per day. The
average download rate of a peer is enhanced from 57 to
158 KBps, where 45 percent of the download rate is
obtained from third-party servers. Meanwhile, the EBU of
the involved servers is generally limited within 40 percent,
so their original services are not obviously interfered. To
our knowledge, this paper is the first “white-box” study of
open-P2SP, which provides solid experiences and helpful
heuristics to the designers of similar systems.

1.5 Roadmap

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 overviews
the system design. Section 4 describes the challenging
problems and corresponding solutions. Section 5 evaluates
the real-world performance of QQXuanfeng. Finally, we
conclude the paper in Section 6.

2 RELATED WORK

In recent years there have been considerable researches on
P2SP, such as P2SP streaming [6], P2SP storage [7], hybrid
CDN-P2P [8], [9], and so forth.

2.1 P2SP Streaming

Wu et al. [6] refocused on the important role of servers in
P2P video streaming. Through measurements of a popular
P2P live TV system [4], they found that the total available
bandwidth of the 150 dedicated streaming servers could
not meet the increasing demand of download bandwidth
from hundreds of TV channels (a TV channel can be seen as
a peer swarm), although the total upload bandwidth of
peers also increased with download demand. So they
proposed an allocation algorithm of server bandwidth

named Ration, which proactively predicts the minimum
server bandwidth demand of each channel from historical
information and thus assigns appropriate server bandwidth
to each TV channel.

2.2 P2SP Storage

Based on a popular P2SP storage system [16], Sun et al. [7]
discussed the tradeoff among file availability, download
performance and server resource costs (including both
bandwidth and storage cost) in P2SP cooperative storage. to
save the critical server bandwidth cost, they concluded
three conditions in which peers are allowed to obtain data
from servers: 1) no online peer owns the requested file; 2) a
special block of the requested file is missed in all online
peers; and 3) the average download rate of the users inside
a peer swarm is lower than 10 KBps. When a user uploads a
file to the system, the servers make sure only one copy
exists so as to save server storage cost.

2.3 Hybrid CDN-P2P

Content distribution network (CDN) like Akamai and
Limelight is the most common facility that optimizes the
performance of Internet content distribution by strategi-
cally deploying edge servers at multiple locations. CDN is
traditionally used to accelerate server-based content dis-
tribution, but Yin et al. [8] developed a hybrid CDN-P2P
video streaming system on top of ChinaCache [17] (the
largest CDN in China) to incorporate the strengths on both
sides: the quality control and reliability of CDN and the
inherent scalability of P2P. They proposed a mechanism for
dynamic resource scaling that guarantees adequate quality-
of-service to end users, so as to address several short-
comings of common P2P streaming such as high buffering
requirement and low streaming quality. Besides, based on
the novel Akamai NetSession interface [9], Haeberlen et al.
[18] designed a method for providing reliable accounting
of client interactions in hybrid CDN-P2P systems.

2.4 Xunlei Open-P2SP System

Xunlei [11] is the biggest open-P2SP system in China (and
perhaps in the world also). Unfortunately, till now there has
been no official publication on its technical designs or
system performances, but some preliminary measurements
have been revealed in [19], [20], and [21] via a “black-box”
method. Xunlei takes an aggressive data scheduling strategy
which often makes nearly full use of server bandwidth to
achieve high user experiences. This is a major cause of
complaints of Xunlei by various server providers who have
accused it of interfering with their original services. And
this is one of the reasons that its initial public offerings
process has been rather difficult [22]. In contrast, QQXuan-
feng adopts a more conservative data scheduling strategy
which strives for a proper tradeoff between user experience
and server bandwidth burden.

3 QQXUANFENG SYSTEM OVERVIEW

3.1 System Architecture and Index Structure

As depicted in Fig. 2, the QQXuanfeng system architecture
consists of four major building blocks:

1. content index DB,
2. content crawler,

LI ET AL.: CHALLENGES, DESIGNS, AND PERFORMANCES OF LARGE-SCALE OPEN-P2SP CONTENT DISTRIBUTION 2183

3. content validator and
4. data scheduler,

utilizing 53 commodity servers in total (refer to Section 2 of
the online supplementary file for detailed hardware
composition). All these servers run the Enterprise Suse
Linux v10.1 and gcc v4.1. The user of QQXuanfeng needs to
install its client software [1] (of about 12.5 MB) which
simultaneously supports the HTTP, FTP, RTSP, BitTorrent,
eMule, and XFPP data transfer protocols (see Fig. 3). When
installing the client, the user can choose whether to add a
QQXuanfeng plugin into his web browser. If the plugin is
added, the QQXuanfeng client will automatically take over
the user’s download task issued from the web browser.

Lying at the center of the system, the content index DB
stores the index information of the downloadable contents
detected by the content crawler. The content index DB
employs MySQL v5.1 as its database management system.
The index information includes the (content) link, server IP
address, name, size, chunk size, type, MD4 hash code, SHA1
hash code, three-chunk hash code, and chunk hash code list
of every indexed file. The chunk size should be a power of
2 bytes—typically between 32 KB and 16 MB. For an
indexed file f , the 128-bit MD4 hash code is used for eMule
data transfer because the eMule protocol employs an MD4
hash code for content identification. Similarly, the 160-bit
SHA1 hash code is used for BitTorrent data transfer. Both the
MD4 hash code and the SHA1 hash code are calculated
(by the content publisher) from the whole content of f , but
the 160-bit three-chunk hash code is calculated from only
three chunks of f : the first chunk (C1), the middle chunk
(Cdn=2e), and the last chunk (Cn) (n is the total number of
chunks in f). Specifically, the three-chunk hash code

¼ SHA1ðMD4ðC1ÞjMD4ðCdn=2eÞjMD4ðCnÞÞ;

where ‘j means XOR operation. Finally, the chunk hash code
list contains the MD4 hash code of every chunk.

Why is the three-chunk hash code necessary? When the
content crawler discovers a novel eMule link, it can directly
extract the MD4 hash code from the eMule link as the
content identification. When it discovers a novel BitTorrent
link, it first downloads the .torrent file (of several KBytes)
from the BitTorrent link and then extracts the SHA1 hash
code from the .torrent file as the content identification.
However, when the content crawler discovers a novel
HTTP/FTP/RTSP link, there is no hash code contained in
the link and it is usually impractical for the content crawler
to download the whole linked file (often up to hundreds of

MBytes or several GBytes) to calculate the content identi-
fication. Instead, the content crawler only downloads
the three special chunks (first, middle, and last chunks) of
the linked file to calculate the three-chunk hash code as the
content identification, and thus the resulting download
traffic is affordable and the hash conflict probability is
extremely low. Besides, the three-chunk hash code is also
used by XFPP (the Xuanfeng P2P Protocol), a special P2P
protocol designed for QQXuanfeng clients. With any kind
of hash code, the content index DB can find other
corresponding hash codes and a variety of links that point
to the same content (i.e., the “mapping” operation).

The content crawler crawls content links by traversing on
third-party servers (see Arrow 1 in Fig. 2) and receiving user
reported novel links (see Arrow 2 in Fig. 2). Meanwhile, the
content validator validates the user reported invalid links
(see Arrow 3 in Fig. 2) by checking them on the Internet
(see Arrow 4 in Fig. 2). With the help of content crawler and
content Validator, QQXuanfeng continuously discovers
novel links and discards invalid links. The detailed working
principles will be presented in Section 4.1.

The basic roles of the data scheduler are threefold: 1)
maintaining a peer list for every peer swarm (thus acting as
a P2P tracker), 2) telling each user that servers and peers
contain his interested content, and 3) periodically collecting
users’ reports to analyze their working status and calculate
the EBU of each involved server (see Arrow 5 in Fig. 2). In
particular, the data scheduler handles two problems:
1) limited utilization of server bandwidth and 2) differ-
entiated acceleration of peer swarms. Their specific solu-
tions will be elaborated in Sections 4.2 and 4.3.

3.2 A Typical User’s Request Processing

Fig. 4 plots the concrete steps about how a typical user’s
request is processed. First, the user inputs a link (or via
the QQXuanfeng web browser plugin) to the client (see
Arrow 1 in Fig. 4). The user can also input several
keywords and then the client will return a list of related
links for a possible choice. If the input link is an HTTP/
FTP/RTSP link, the client first downloads the three special
chunks of the linked file to calculate the three-chunk hash
code, and then sends the three-chunk hash code to the data
scheduler (see Arrow 2 in Fig. 4). Likewise, if the link is a
BitTorrent link, the client first downloads the .torrent file to
extract the SHA1 hash code and then sends the SHA1 hash
code. Besides, if the link is an eMule link, the client directly
extracts the MD4 hash code from the eMule link and then
sends the MD4 hash code.

2184 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2013

Fig. 2. System architecture of QQXuanfeng.

Fig. 3. Software architecture of the QQXuanfeng client. In the chunk
cache, gray chunks have been obtained while white chunks have not.

The data scheduler inputs the hash code to the content
index DB to find other corresponding hash codes and
existing links that point to the same content (see Arrow 3 in
Fig. 4). If the hash code is novel to the content index DB, the
data scheduler will notify the client to send the input link to
the content crawler for further processing (see Arrow 4 in
Fig. 4). Otherwise, the content index DB maps the hash code
to a chunk hash code list and a (server) link list (see Arrow 5
in Fig. 4).

After getting the chunk hash code list and the (server)
link list, the data scheduler returns the chunk hash code list,
a part of the link list (i.e., the “partial link list”) and a part of
the corresponding peer list (i.e., the “partial peer list”) to the
client (see Arrow 6 in Fig. 4). Then the client first attempts
to set up data connections with the listed peers (see Arrow 7
in Fig. 4). Note that the client may also exchange data with
non-QQXuanfeng users who are not monitored by
QQXuanfeng (see Arrow 8 in Fig. 4). The client maintains
a “chunk map” and sends the chunk map to its connected
peers in every minute if the chunk map is updated. If the
total P2P data transfer rate is below the user’s basic
expectation, the client will further set up data connections
with the listed servers (see Arrow 9 in Fig. 4).

The QQXuanfeng client adopts a simple chunk schedul-
ing strategy: at any time it only assigns one chunk for one
data connection to retrieve. When the assigned chunk is
obtained, the corresponding data connection will be
assigned to retrieve another chunk. On the other hand, if
the assigned chunk (say Ci) cannot be obtained in a
“timeout period” (generally proportional to the chunk size
and no less than 10 seconds) the corresponding data
connection will be terminated. Furthermore, if a data
connection to a server (link) is terminated for the above
reason, the client will report this (possible) dead link
(regarding to chunk Ci)

2 to the content validator (see Arrow
10 in Fig. 4). Once a chunk Ci is obtained from a link, the
client validates it by using the chunk hash code list. If the
client finds an inconsistent link (that distributes an incon-
sistent chunk Ci) it will report this (possible) inconsistent

link to the content validator (see Arrow 10 in Fig. 4). The
chunk retrieving priority depends on the user’s require-
ment: if the user chooses the “view-as-download” mode,
the chunks are retrieved in their playback order; otherwise,
the chunks are retrieved in the “rarest first” manner.

4 CHALLENGING PROBLEMS AND SOLUTIONS

4.1 Handling Server and Content Dynamics

To handle server and content dynamics, we build the
content crawler and content validator. The content crawler
continuously crawls content links by breadth-first search
(BFS) traversing on third-party servers and meanwhile
receiving user reported novel links. The BFS traversing uses
a link queue as its data structure. Various file links (e.g., links
to videos, audios, documents, and softwares) and nonfile
links (e.g., links to web pages) are collected by the content
crawler. To avoid crawling loop links, recently visited links
are cached to check whether these links have been revisited.
Repeated links are discarded. Then, (possible) novel file
links are directly put into the content index DB for further
processing like file link filtering (as described in Section 5.1 of
the online supplementary file) and merging into corre-
sponding indexes. Novel nonfile links are inserted into the
queue for subsequent processing.

Servers may join in or leave from the Internet for various
reasons and meanwhile their affiliated contents are con-
stantly emerging, updating, and expiring. However, the
corresponding links of these contents are often left invari-
able, thus turning into invalid links (including dead links and
inconsistent links) scattered all over the Internet. The
negative effects of invalid links are at least threefold:
1) incurring unnecessary storage burden to the content
index DB, 2) bringing unnecessary network burden to the
users who try to connect the linked servers, and 3) de-
grading the scheduling performance of the data scheduler
when it assigns some invalid links to a peer swarm for
download acceleration. To this end, the content validator
constantly validates the user reported invalid links by
checking them on the Internet:

. On receiving a dead link l (regarding to chunk Ci)
reported by a user, the content validator attempts to
download Ci from l. If Ci cannot be downloaded, l is
judged to be a dead link and is then removed from
the content index DB. Otherwise, the content
validator simply tells the reporting user that he has
misreported a dead link.

. On receiving an inconsistent link l (regarding to
chunk Ci) reported by a user, the content validator
first downloads Ci from l and computes the latest
MD4 hash code of Ci. If the latest MD4 hash code is
the same as the existing MD4 hash code of Ci
contained in the chunk hash code list, the content
validator simply tells the reporting user that he has
misreported an inconsistent link. Otherwise, l is
judged to be an inconsistent link and the content
validator continues to download the whole linked
file, updates or adds the corresponding index
information in the content index DB, and notifies
the reporting user to restart his download task.

To check the practical performances of the content
crawler and the content validator, we measure the numbers

LI ET AL.: CHALLENGES, DESIGNS, AND PERFORMANCES OF LARGE-SCALE OPEN-P2SP CONTENT DISTRIBUTION 2185

2. There are two kinds of invalid links: 1) dead links and 2) inconsistent
links. “Dead” means the link is inaccessible while “inconsistent” means the
linked file has been changed.

Fig. 4. A typical user’s request processing.

of involved links, novel links, dead links, and inconsistent
links in 20 days in December 2011 in Fig. 5. The major
observation is that the ratios of novel links, dead links, and
inconsistent links (over the involved links) are quite stable
around 27, 3.3, and 0.6 percent, respectively. Although the
ratio of inconsistent links (0.6 percent) is much smaller than
that of dead links (3.3 percent), the negative effect brought
by inconsistent links is much larger—for a dead link
QQXuanfeng only needs to discard it in the content index
DB, while for an inconsistent link QQXuanfeng needs to
download the whole linked file and notify the reporting
user to restart his download task.

Besides, the link popularity distribution of indexed
contents and the user access pattern are presented in
Section 3 of the online supplementary file. Moreover,
Section 5.2 of the online supplementary file discusses about
how to handle the peer swarm dynamics.

4.2 Limited Utilization of Server Bandwidth

Presently, QQXuanfeng tracks over 1 million servers every
day. By intelligently directing peer swarms to retrieve data
from appropriate servers, QQXuanfeng achieves limited
and balanced utilization of the server bandwidth, so that the
original services offered by the involved servers are not
interfered. As to each server S, by collecting and analyzing
users’ reports, QQXuanfeng can get its approximate max-
imum bandwidth and its extra traffic volume directed by
QQXuanfeng. Due to the high dynamics of the Internet,
getting the accurate maximum bandwidth of a server is
extremely difficult; instead, we adopt a simple approximate
estimation method as follows. When the content crawler
discovers a novel server S, in the subsequent day the data
scheduler does not limit the server bandwidth utilization of
S but directs as many clients to retrieve data from S as
possible. Then the peak upload bandwidth of S during this
day is approximately taken as its maximum bandwidth.
Besides, even the real maximum bandwidth of S can be
changed by its administrator, so the above-mentioned
estimation method is periodically performed to update the
maximum bandwidth information of S (the update period
is usually set as one month).

The worst thing is that QQXuanfeng cannot obtain the
original traffic volume of a server consumed to support its
original service. To get a basic understanding, we obtain the
original traffic information of a sample of servers (named

“friendly servers”) via manual approaches, that is, by
directly obtaining the original traffic information of
619 friendly servers (including both file download servers
and video streaming servers) from their administrators.
Fig. 6 plots the average OBU of these friendly servers in 24
hours, starting from 0:00, GTMþ8, on December 15, 2011.
The curve illustrates an obvious diurnal pattern that
accords with people’s regular pattern of accessing Internet.
The OBU of these servers usually stays below 60 percent and
the whole average utilization is merely 22 percent.
Furthermore, the measurements done by Heller et al. [23]
on 292 servers hosting an e-commerce application and a
production Google data center have also revealed low
bandwidth utilization of servers (less than 25 percent in
average), which is basically consistent with our findings.

Therefore, as to each involved server, the EBU directed
by QQXuanfeng had better be controlled within 40 percent
(¼ 1� 60 percent). The data scheduler periodically collects
users’ reports to calculate the EBU of each server (the period
is 5 minutes). If the EBU of a server S exceeds 40 percent,
the data scheduler notifies a part of the users served by S to
stop their data download from S. For example, suppose the
current EBU of S is 50 percent and S is uploading data to
100 users. Then the data scheduler notifies 20 users
(20 ¼ 100� 50%�40%

50%) who have the highest download rates
among the 100 users to stop their data download from S.

Besides, the data scheduler also shuffles the server link
list to balance the load among involved servers. As to a file
f , the data scheduler holds a “link list” of f , denoted as lf
which is returned by the content index DB (see Arrow 5 in
Fig. 4). Whenever the data scheduler decides to allocate a
partial link list containing n server links to a user, the data
scheduler first shuffles lf and then allocates the first n server
links in lf to the user (see Arrow 6 in Fig. 4). The number n
will be elaborated in Section 4 of the online supplementary
file). Moreover, the user can ask the data scheduler to
update his allocated partial link list if his download rate
stays below his basic expectation.

4.3 Differentiated Acceleration of Peer Swarms

Although every user of QQXuanfeng hopes to achieve his
best experience, through comprehensive measurements
and analysis (in Section 4 of the online supplementary
file) we discover that a user has his basic expectation
(dbasic ¼ 30 KBps) for download rate. Thus, our heuristic
is to provide differentiated acceleration of peer swarms.

2186 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2013

Fig. 5. Numbers of involved links, novel links, dead links, and
inconsistent links in 20 days.

Fig. 6. OBU of the measured servers in 24 hours.

Specifically, peer swarms are classified into three categories
according to their real-time download rates and data supply
demand conditions: 1) hungry swarms, 2) potentially hungry

swarms, and 3) high-demand swarms. Different categories of
peer swarms correspond to differentiated acceleration
strategies so that each user can have a download rate at
least above his basic expectation.

. First, a peer swarm is taken as a hungry swarm if the
average download rate of its peers is below a
common user’s basic expectation (dbasic ¼ 30 KBps).

. Second, a peer swarm is taken as a potentially hungry
swarm if the average download rate of its peers
exceeds 30 KBps but its ATD is quite low. Since ATD
is an empirical indicator that illustrates the statisti-
cally data supply demand condition of a swarm, low
ATD often (but not always) implies a potential risk of
being hungry. Fig. 7 plots the statistical relationship
between ATD and download rate with various
leecher scales (Fig. 7 is obtained from the measure-
ments of 1 million swarms). Accordingly, the setting
of ATD varies with the leecher scale, as listed in
Table 1. Thereby, we use the “ATD of 30 KBps” to
recognize potentially hungry swarms.

. Third, a high-demand swarm should contain more
than ten peers and its file type should be a video
type like .rmvb, .mp4, and so on. If a swarm is
sharing a video file, its peers may well demand a
high download rate (dhigh ¼ 100 KBps) for contin-
uous playback; and the swarm scale is also
demanded to be large enough (typically >10) so
that the invested server bandwidth is cost effective.3

A hungry swarm is allocated with a “partial link list” that

contains a certain number (n) of server links to enhance its

ATD to the “ATD of 30 KBps” (see Table 1). For example, if

a hungry swarm Wh contains eight leechers and six seed

peers sharing a file f and the data scheduler holds a “link

list” of f , the data scheduler will allocate n ¼ 2� 8� 6 ¼ 10

server links to each peer inside Wh for download accelera-

tion. Here “2” is got from Table 1: Row 3 and Column 4.
Note that different peers inside Wh are usually allocated
with different partial link lists because the data scheduler
always shuffles the link list before allocating a partial link list
to a peer. Because ATD is a statistical indicator rather than
an accurate metric, it is possible that some peers still have a
download rate below 30 KBps after utilizing the allocated
partial link list. Consequently, if the accelerated download
rate is still below 30 KBps for a peer p, p will ask the data
scheduler to update his allocated partial link list.

For a potentially hungry swarm Wp, the allocation strategy
of server links is alike except that the allocated server links
cannot be used to really download data (namely, the
allocated server links are just taken as contingency data
sources). If the download rate of a peer p inside Wp falls
below 30 KBps, p is allowed to really download data from
his allocated server links. Similarly, a high-demand swarm is
allocated with sufficient server links to enhance its ATD to
the “ATD of 100 KBps.”

4.4 Bringing Extra Benefit to Server Providers

QQXuanfeng aims to benefit all the relevant parties: server
providers, peer swarms and QQXuanfeng in itself, because
any party’s resents can hinder or even damage the whole
open-P2SP system. Peer swarms get enhanced download
rates from QQXuanfeng, but server providers may be
reluctant to support QQXuanfeng if they cannot obtain
extra benefit from extra bandwidth cost. The two most
important benefit metrics of a server provider are its PV [14]
and PTC [15]. Normally, if an Internet user wants to get a
file f from a web site (server provider), he needs to click on
several links on multiple pages to get the download link,
and thus the PV of the web site is added by a certain integer
(�1). Meanwhile, the PTC of the web site is likely to
increase if the user clicks on some advertisements on the
web pages. However, QQXuanfeng directly allocates the
download link of f to the user (of course this brings
convenience to the user), so the server provider gets no PV
or PTC additions and loses his economic benefit.

At present, we are fostering benefit collaborations with
server providers from both perspectives of PV and PTC, to
encourage more server providers to support QQXuanfeng.
Establishing the benefit collaboration scheme involves
complicated technical and economic factors, and in fact
there exists no commercially mature precedent for us to
follow, so our following scheme may be incomprehensive
and transitional. On one hand, if a server provider uploads
a file f to a peer swarm by the direction of QQXuanfeng, the
corresponding PV of the server provider will be increased
in the web search engine (“Soso” [24]) of QQXuanfeng. Soso
is the fourth biggest web search engine in China [25], just
lagging behind Baidu, Google China, and Sogou [26]. If a
server provider contributes a lot to QQXuanfeng, its
corresponding pages or file links will be highly ranked in
the search results of Soso, so that the bandwidth contribu-
tion of the server provider gets rewarded. On the other
hand, QQXuanfeng shares its PTC revenue with server
providers. QQXuanfeng acquires PTC revenue by embed-
ding advertisements into its client software. If a server
provider contributes a lot to QQXuanfeng, it will be
rewarded by a nontrivial share of our PTC revenue.

LI ET AL.: CHALLENGES, DESIGNS, AND PERFORMANCES OF LARGE-SCALE OPEN-P2SP CONTENT DISTRIBUTION 2187

Fig. 7. Relationship between ATD and download rate with various
leecher scales. (“Leecher scale” denotes the number of online leechers
inside a peer swarm.)

3. Inside a swarm, the data exchange between its peers is able to

“amplify” the invested server bandwidth, i.e., the amplification factor

¼ peers0 download rate increase
invested server bandwidth > 1. Generally speaking, the larger the swarm scale

is, the larger the amplification factor will be.

One thing worth noting is that the above PV and PTC
methods may take different roles for different open-P2SP
systems. For example, as for QQXuanfeng, the PV method
is the dominant because Soso is a mainstream web search
engine in China. But as for Xunlei, the PTC method is the
dominant because the web search engine (“Gougou” [27])
of Xunlei is relatively weak.

5 PERFORMANCE EVALUATION

This section evaluates the performance of our QQXuanfeng
open-P2SP system via comprehensive real-world measure-
ments, as well as specially operated localized and
sampling measurements. First, we measure its acceleration
effect on peer swarms and how its acceleration effect
behaves as the system scales. Then we measure the
bandwidth contribution of the involved servers corre-
sponding to different file sizes and swarm scales. Finally,
we measure the EBU of the involved servers. The major
performance metrics are as follows:

1. Acceleration effect on peer swarms represents to what
extent the download rates of peers have been
increased by QQXuanfeng. This is the kernel
performance metric and we extensively evaluate it
in three aspects: a) download rate distribution,
b) acceleration effect brought by QQXuanfeng, and
c) acceleration effect as the system scales.

2. Bandwidth contribution of servers denotes the ratio of
the users’ download bandwidth obtained from
third-party servers.

3. EBU of servers illustrates the extra bandwidth burden
posed on the involved servers by QQXuanfeng.

5.1 Acceleration Effect on Peer Swarms

5.1.1 Download Rate Distribution

Fig. 8 depicts the distribution of peers’ download rates
in one day (December 15, 2011), where “50” denotes the

region [40, 50) and “500þ” denotes the region [400;þ1).

Obviously, three download rate regions: [100 K, 150 K),
[150 K, 200 K), and [200 K, 250 K) possess the most peers:
16 percent þ 15 percent þ 7 percent ¼ 38 percent, and more
than half (51.4 percent) of the peers have a download rate
above 100 KBps (dhigh). On the other hand, 17.5 percent of
the peers have a download rate below 30 KBps (dbasic). That
is to say, more than 1/6 of the peer swarms are still hungry,
mainly because QQXuanfeng does not find sufficient
servers that provide the corresponding contents—to deal
with this case, we have proposed and implemented a novel
“cloud download” scheme [28] and have started to implement
an ISP-friendly cache mechanism in some cooperative ISPs
(refer to Section 5.3 of the online supplementary file).
Generally speaking, most users have a download rate above
their basic expectations and half of the users have a high
enough download rate for continuous video playback.

5.1.2 Acceleration Effect Brought by QQXuanfeng

For a peer swarm W , to evaluate the acceleration effect on
its download rate brought by QQXuanfeng, we need to
stop the acceleration support to W to measure the original
download rate of W . Specifically, stopping the acceleration
support to a swarm means that the data scheduler does
not provide any server link to the peer swarm, and thus
the swarm cannot retrieve data from servers. It should be
noted that we can only stop the acceleration support to a
small number of swarms for a limited period of time to
avoid severe degradation in user experience. Therefore, we
stop the acceleration support to a random sample of peer
swarms (around 1,000 swarms in total) for 7 days, and
then recover the acceleration support. The acceleration
effect on the download rate is plotted in Fig. 9, indicating
that the average download rate of a peer is enhanced from
57 to 158 KBps (177 percent increase). Besides, we record
the acceleration effect on the ratio of hungry swarms
among the sampling swarms in Fig. 10. The ratio of
hungry swarms has fallen from 41.6 to 17.2 percent (58
percent reduction).

5.1.3 Acceleration Effect as the System Scales

As time goes on, QQXuanfeng collects more content links
from more servers and meanwhile serves more peer

2188 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2013

Fig. 8 Distribution of peers’ download rates in one day.

TABLE 1
ATD Settings (Corresponding to Fig. 7)

Fig. 9. Acceleration effect on the download rate.

swarms. For example, in the year 2010, QQXuanfeng gained
around 5,000 new users and indexed around 0.6 million
novel content links per day. To illustrate how the accelera-
tion effect behaves as the system scales, we record the
average download rate of all the peers per day in the whole
year, as depicted in Fig. 11. We can see that the average
download rate has been enhanced from 115 to 165 KBps
(43.5 percent increase). Besides, Fig. 12 presents that the
ratio of hungry swarms has fallen from around 34 percent
to around 17 percent (50 percent reduction). During the
whole year 2010, our hardware architecture generally
worked well without adding or upgrading any machine.
In conclusion, the acceleration effect of QQXuanfeng tends
to be enhanced as the system scales (and some hardware
component may need upgrading accordingly).

5.2 Bandwidth Contribution of Servers

A key design target of QQXuanfeng is to let third-party
servers contribute their available bandwidth to the peer
swarms on demand. In this section, we measure the
bandwidth contribution (to peer swarms) of the involved
servers. Figs. 13 and 14 plot the server bandwidth contribu-
tion corresponding to different file sizes and swarm scales.
Generally speaking, when a peer downloads a small file
(<100 MB) or when the peer lies in a small swarm (<20), it
mainly relies on server bandwidth; on the contrary, when a
peer downloads a large file (>1 GB) or when the peer lies in
a big swarm (>30), it relies more on its neighboring peers.

The relationship between the server bandwidth contribu-
tion and the swarm scale is straightforward. Now, we
discuss the impact of file size. Retrieving a small file directly
from a server is convenient and quick, while retrieving a
small file from peers is not cost effective, since the necessary
P2P operations (i.e., establishing and maintaining peer
connections) require considerable communication overhead.
Moreover, most peers leave the swarm soon after they finish
downloading, so it is more difficult to find peers that share a
small file. In total, up to 45 percent of the download rate of
peers is obtained from the involved servers (note that in
Fig. 13, large files have significant impact in computing the
total server bandwidth contribution).

5.3 Extra Bandwidth Utilization of Servers

Another important design target of QQXuanfeng is to
facilitate load-balancing among third-party servers so that
their original services are not interfered. As depicted in
Fig. 15, we record the average EBU of all the involved
servers by the direction of QQXuanfeng per 5 minutes in
24 hours starting from 0:00, GTMþ8, on December 15,
2011. In each 5 minute interval, the average EBU is mostly
below 40 percent. Besides, a “snapshot” distribution of the
EBU of the involved servers in a five-minute interval is
recorded in Fig. 16 (where “0.4” denotes the region [0.3,
0.4]). In this 5 minute interval, the EBU of 88 percent

LI ET AL.: CHALLENGES, DESIGNS, AND PERFORMANCES OF LARGE-SCALE OPEN-P2SP CONTENT DISTRIBUTION 2189

Fig. 10. Acceleration effect on the ratio of hungry swarms.

Fig. 11. Average download rate of all peers per day in one year.

Fig. 12. Ratio of hungry swarms per day in one year.

Fig. 13. Server bandwidth contribution corresponding to different
file sizes.

Fig. 14. Server bandwidth contribution corresponding to different
swarm scales.

Fig. 15. Average EBU of the involved servers in 24 hours.

involved servers is below 40 percent. Because QQXuanfeng

periodically (the period is 5 minutes) collects users’ reports

to calculate the EBU of each involved server and then take

measures to restrict the EBU of each involved server, it is

reasonable that a small portion of the involved servers

are temporarily overloaded. In a word, Figs. 15 and 16

confirm that QQXuanfeng has made limited and balanced

utilization of the involved servers.

6 CONCLUSION AND FUTURE WORK

Please refer to Section 6 of the online supplementary file for

the conclusion and possible future work. This work was

performed when Dr. Zhenhua Li was a PhD student at

Peking University, Beijing, China.

REFERENCES

[1] QQXuanfeng Web Site, http://xf.qq.com, 2013.
[2] Spotify Web Site, http://www.spotify.com, 2013.
[3] iKu P2P Accelerator, http://c.youku.com/ikuacc, 2013.
[4] UUSee Web Site, http://www.uusee.com, 2013.
[5] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang, “Challenges,

Design and Analysis of a Large-Scale P2P-VOD System,” Proc.
ACM SIGCOMM, Aug. 2008.

[6] C. Wu, B. Li, and S. Zhao, “On Dynamic Server Provisioning in
Multichannel P2P Live Streaming,” IEEE/ACM Trans. Networking,
vol. 19, no. 5 pp. 1317-1330, Oct. 2011.

[7] Y. Sun, F. Liu, B. Li, B. Li, and X. Zhang, “FS2You: Peer-Assisted
Semi-Persistent Online Storage at a Large Scale,” Proc. IEEE
INFOCOM, Apr. 2009.

[8] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B.
Li, “Design and Deployment of a Hybrid CDN-P2P System for
Live Video Streaming: Experiences with LiveSky,” Proc. ACM 17th
ACM Int’l Conf. Multimedia (MM), Oct. 2009.

[9] Akamai NetSession Interface. http://www.akamai.com/client,
2013.

[10] Z. Li, T. Zhang, Y. Huang, Z.L. Zhang, and Y. Dai, “Maximizing
the Bandwidth Multiplier Effect for Hybrid Cloud-P2P Content
Distribution,” Proc. IEEE/ACM 20th Int’l Workshop Quality of
Service (IWQoS), June 2012.

[11] Xunlei Web Site, http://www.xunlei.com, 2013.
[12] Flashget Web Site, http://www.flashget.com, 2013.
[13] Orbit Web Site, http://www.orbitdownloader.com, 2013.
[14] PV (Page View), http://en.wikipedia.org/wiki/Page_view, 2013.
[15] PTC (Paid-to-Click), http://en.wikipedia.org/wiki/Paid_To_

Click, 2013.
[16] Rayfile Web Site, http://www.rayfile.com, 2013.
[17] ChinaCache CDN, http://www.chinacache.com, 2013.
[18] P. Aditya, M. Zhao, Y. Lin, A. Haeberlen, P. Druschel, B. Maggs,

and B. Wishon, “Reliable Client Accounting for P2P-Infrastructure
Hybrids,” Proc. Ninth USENIX Conf. Networked Systems Design and
Implementation (NSDI), Apr. 2012.

[19] P. Dhungel, K. Ross, M. Steiner, Y. Tian, and X. Hei, “Xunlei:
Peer-Assisted Download Acceleration on a Massive Scale,”
Proc. 13th Passive and Active Measurement Conf. (PAM), Mar.
2012.

[20] M. Zhang, W. John, and C. Chen, “Architecture and Down-
load Behavior of Xunlei: A Measurement-Based Study,” Proc.
Second Int’l Conf. Education Technology and Computer (ICETC),
June 2010.

[21] M. Zhang, W. John, and C. Chen, “A Measurement-Based Study of
Xunlei,” Proc. 10th PAM Student Workshop, Apr. 2009.

[22] http://tech.163.com/11/0728/07/7A1J9GKV000915BF.html,
2013.

[23] B. Heller et al., “ElasticTree: Saving Energy in Data Center
Networks,” Proc. USENIX Conf. Networked Systems Design and
Implementation (NSDI), Apr. 2010.

[24] Soso Search Engine, http://www.soso.com, 2013.
[25] A Report on China’s Search Engine Ranking (Apr. 2011), http://

search.iresearch.cn/32/20110412/136979.shtml, 2013.
[26] Sogou Search Engine, http://www.sogou.com, 2013.
[27] Gougou Search Engine, http://www.gougou.com, 2013.
[28] Y. Huang, Z. Li, G. Liu, and Y. Dai, “Cloud Download: Using

Cloud Utilities to Achieve High-Quality Content Distribution for
Unpopular Videos,” Proc. 19th ACM Int’l Conf. Multimedia (MM),
Nov./Dec. 2011.

Zhenhua Li received the PhD degree in
computer science and technology from Peking
University, Beijing, China. Then he joined the
School of Software and TNLIST, Tsinghua
University, Beijing, China. His current research
areas mainly consist of Internet content distribu-
tion, cloud storage and P2P (peer-to-peer)
technologies. He has published one book and
27 technical papers in the above areas. He is a
member of the ACM, ACM SIGMM, and the

China Computer Federation.

Yan Huang received the bachelor’s and
master’s degrees both from the University of
Science and Technology of China. He is
currently working at the Baidu Antivirus,
Shanghai, China. As a director, he used to
lead the P2P and cloud computing related
projects of Tencent Research. Before joining
the Tencent company, he cofounded PPLive
(now known as PPTV.com) and acted as the
chief architect. He has published papers in

multiple well-recognized conferences like SIGCOMM, ACM-MM,
ICCCN, and so forth.

Gang Liu received the bachelor’s and master’s
degrees both from the Huazhong University of
Science and Technology, China. As a system
architect, he is currently taking charge of the
P2P and cloud computing related technologies
of Tencent Research, in particular the Tencent
cloud downloading and cloud transcoding sys-
tems. He has published papers in referred
conferences/workshops like ACM-MM and
NOSSDAV.

Fuchen Wang received the bachelor’s and
master’s degrees both from the Huazhong
University of Science and Technology, China.
As a system architect, he used to take charge of
the P2P and cloud computing related technolo-
gies of Tencent Research, in particular the
Tencent cloud downloading and cloud transcod-
ing systems. He is currently working at the Baidu
Antivirus, Shanghai, China.

2190 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2013

Fig. 16. Distribution of the EBUs of the involved servers in five minutes.

Yunhao Liu received the BS degree in automa-
tion from Tsinghua University, Beijing, China, in
1995, the MS and PhD degrees in computer
science and engineering from the Michigan
State University, in 2003 and 2004, respectively.
He is now the EMC chair professor at Tsinghua
University, as well as a faculty member with the
Hong Kong University of Science and Technol-
ogy. His research interests mainly include
wireless sensor network, peer-to-peer comput-

ing, and pervasive computing. He is a senior member of the IEEE and
the IEEE Computer Society.

Zhi-Li Zhang (M’97-SM’11-F’12) received the
BS degree from Nanjing University, Jiangsu,
China, in 1986, and the MS and PhD degrees
from the University of Massachusetts, Amherst,
in 1992 and 1997, respectively, all in computer
science. In 1997, he joined the Computer
Science and Engineering faculty with the Uni-
versity of Minnesota, Minneapolis, where he is
currently a professor. From 1987 to 1990, he
conducted research with the Computer Science

Department, Aarhus University, Denmark, under a fellowship from the
Chinese National Committee for Education. He has held visiting
positions with Sprint Advanced Technology Labs, Burlingame, CA;
IBM T. J. Watson Research Center, Yorktown Heights, NY; Fujitsu Labs
of America, Sunnyvale, CA; Narus Inc., Microsoft Research; INRIA,
Sophia-Antipolis, France; Universidad de Carlos III de Madrid and
IMDEA Networks. He is a corecipient of three Best Paper Awards from
ACM SIGMETRICS, IEEE ICNP, and IEEE INFOCOM. He is a fellow of
the IEEE.

Yafei Dai received the PhD degree in computer
science and technology at the Harbin Institute of
Technology, China. She is a professor at the
Department of Computer Science and Technol-
ogy, Peking University, Beijing, China. Her
research areas mainly include networked and
distributed systems, P2P computing, network
storage and online social networks. She is a
member of the IEEE, IEEE Computer Society,
and China Computer Federation.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LI ET AL.: CHALLENGES, DESIGNS, AND PERFORMANCES OF LARGE-SCALE OPEN-P2SP CONTENT DISTRIBUTION 2191

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

