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Abstract—Cloud storage services such as Dropbox have been widely used for file collaboration among multiple users. However, this

desirable functionality is yet restricted to the “walled-garden” of each service. At present, the only feasible approach to cross-cloud file

collaboration seems to be using web APIs, whose performance is known to be highly unstable and unpredictable. Now that using

inefficient web APIs is inevitable, in this paper we attempt to achieve sound user-perceived performance for cross-cloud file

collaboration. This attempt is enabled by two key observations from real-world measurements. First, for each cloud, we are always able

to deploy one or several nearby (client) proxies which can efficiently access the web APIs. Second, during file collaboration, significant

similarity exists among different versions of a file. This can be exploited to substantially reduce inter-proxy traffic and thus shorten the

data sync time. Guided by the observations, we design and implement an open-source prototype system called CoCloud. Currently, it

supports file collaboration among four popular cloud storage services in the US and China. Its performance is well acceptable to users

under representative workloads, even approaching or exceeding that of intra-cloud collaboration in many cases.

Index Terms—Cloud storage, cloud computing, cross-cloud file collaboration, transfer efficiency
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1 INTRODUCTION

PERSONAL cloud storage services, such as Dropbox, Goo-
gle Drive, Microsoft OneDrive, and Baidu PCS [1], have

quickly gained tremendous popularity in recent years, for
they provide convenient data backup and automatic cross-
device/user synchronization (sync). They are seen as a great
advance over, or a useful complement to, traditional network
file services via NFS, HTTP/FTP, or P2P protocols. More
recently, they have been widely used for more advanced,
user-desired functionalities, in particularmulti-user file collab-
oration such as collaborative document or paper editing.

However, this desirable functionality is yet restricted to the
“walled-garden” of each cloud storage service, i.e., file collab-
oration happens inside either Dropbox or OneDrive, but not
both. Meanwhile, users’ preferences for clouds are different
for a number of technical and non-technical reasons. In addi-
tion to personal habits, clouds show great spatial/temporal
variations in performance [2], and some are even unavailable
in certain regions (e.g., Dropbox and Google Drive have been
banned in China). The unsatisfactory status quo urges us to
enable file collaboration across heterogeneous clouds.

Imagine Alice, a user of Dropbox in Los Angeles, and
Bob, a user of Baidu PCS in Beijing, intend to collaboratively
edit a paper. An intuitive approach goes as follows. When-
ever Alice finishes a version of the paper, she generates for
Bob a URL to the version in Dropbox. Then, Bob downloads
the version from the Dropbox URL by issuing an HTTP
GET request. Likewise, Bob also returns to Alice the URL to
his latest version in Baidu PCS after editing. Obviously,
such a manual sharing approach is not only inconvenient but
also inefficient, and is thus hardly adopted in the presence
of frequent file edits.

An alternative approach, also the only seemingly effec-
tive approach at present, is to leverage the public web APIs
provided by these cloud storage services, typically in a
RESTful style for data access at full-file level. In the above
example, Alice and Bob can avoid manual URL generation
and sharing by invoking the web APIs of Dropbox and
Baidu PCS, with the help of tools like IFTTT [3]. Unfortu-
nately, the performance of the web APIs offered by popular
cloud storage services is known to be highly unstable and
unpredictable [2], let alone the lack of advanced data sync
techniques such as delta compression, data deduplication,
and small-file bundling (which are often supported by their
PC clients and mobile apps) [4].

Now that using inefficient web APIs is inevitable, in this
paper we attempt to achieve sound user-perceived perfor-
mance for cross-cloud file collaboration, even under the
workload of frequent file edits. This attempt is enabled by
two key observations from our real-world measurements.
First, for each popular cloud storage service, we are always
able to deploy one or several nearby (client) proxies which
can efficiently access the web APIs. Second, during file
collaboration, significant similarity exists among different
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versions of a file. This can be exploited to substantially reduce
inter-proxy traffic and thus shorten the data sync time.

Guided by the observations, we design and implement
a prototype system called CoCloud. As demonstrated in
Fig. 1, a series of proxies (i.e., rented virtual machines) are
deployed close to the clouds involved, and a unified inter-
proxy advanced transfer protocol is devised to take advantage
of advanced data sync techniques (including deduplication,
compression, bundling, and so forth). To further optimize
the cross-cloud data transfer with multiple proxies, a near-
optimal algorithm is presented to evenly dispatch the
request workloads to proxies and properly determine the
transfer paths.

Besides, we design an online inter-proxy dataflow schedul-
ing algorithm to achieve a moderate balance between the
timeliness of data sync and system overhead. When the for-
mer is satisfied, the algorithm tries to minimize system
overhead (particularly in terms of bandwidth). Otherwise,
more bandwidth or proxies will be adaptively added to the
system to deal with bursty workloads. We also design rele-
vant control mechanisms to guarantee data consistency and
eliminate redundant updates during file collaborations.

Currently, CoCloud supports file collaborations among
four popular cloud storage services in the US and China,
namely Dropbox, Google Drive, Microsoft OneDrive, and
Baidu PCS. Its source code is publicly available at https://
github.com/CoCloud/cocloud-demo. Comprehensive real-world
evaluation results confirm the efficacy and efficiency of
CoCloud. In general, its performance is well acceptable to
users under representative workloads. For example, an end-
to-end file collaboration takes an average of about 25 seconds,
approaching the performance of intra-Dropbox file collabora-
tion. Sometimes, synchronizing a batch of small files from
Dropbox toOneDrive takes less than 20 seconds, even exceed-
ing the performance of intra-OneDrive file collaboration.

In summary, this papermakes the following contributions:

� From a number of real-world measurements, two
key observations are drawn to overcome the ineffi-
ciency of cloud-storage web APIs (Section 2).

� Based on the observations, we design CoCloud, an
efficient cross-cloud file collaboration system that
integrates a bundle of enabling solutions, including
a proximity-aware proxy deployment scheme, a uni-
fied inter-proxy advanced transfer protocol, and a
cross-cloud data transfer optimization algorithm
with multiple proxies (Sections 3.1, 3.2, 3.3, and 3.4).

� To boost collaboration timeliness while reducing
system overhead, we further design an online inter-
proxy dataflow scheduling algorithm. Additionally,

we design file collaboration control mechanisms to
guarantee data consistency and eliminate redundant
updates (Sections 3.5 and 3.6).

� We implement an open-source CoCloud prototype.
Extensive evaluations including both real-world
experiments and trace-driven simulations demon-
strate the well acceptable performance and high scal-
ability of our system (Section 4).

2 MOTIVATION

To synchronize data among devices in real time, most per-
sonal clouds provide a client to interact with the cloud
server. Further, some clouds even support collaborative file
editing among partners. As a great advance compared to the
traditional static URL sharing and web access, the collabora-
tion functionality attracts a multitude of non-computer pro-
fessionals due to its simplicity, even overwhelming the
widely used version control tools like Git and SVN.

Taking the well-known Dropbox as an example, a typical
collaboration protocol includes the interactions between cli-
ent and both data storage server and control server. By analyz-
ing SSL sockets hijacked with DynamoRIO [5], we find that
before and after a client stores or retrieves data to/from the
data storage server (the core file collaboration process), it
need commit metadata (e.g., hashes, file info) to the control
server to either prepare or conclude the process.

On this basis, a number of capabilities are adopted by
Dropbox client, optimizing both storage and transmission.
These include chunking (i.e., splitting data into certain size
units for recovery simplification), deduplication (i.e., trans-
mitting only modified parts for storage and network band-
width savings), bundling and data compression (i.e., batching
multiple small files or compressing large files for further traf-
fic overhead reduction). Widely adopting these capabilities
brings great gains toDropbox’s collaboration service.

Nevertheless, users’ preferences for clouds are different
due to both personal habits and performance considera-
tions. Especially, as Dropbox is unavailable in some regions
like China, a large number of users resort to local cloud
services instead. These users may wonder how they can col-
laboratively edit papers or source codes with their remote
Dropbox partners. Actually, data stored in all personal
clouds are facing the vendor locked-in dilemma: external
access is restricted to proprietary RESTful web APIs.

Based on these APIs, IFTTT [3] provides an intuitive inter-
cloud backup approach: utilizing a proxy to unidirectionally
forward files from one cloud to another. A typical architec-
ture is depicted by Fig. 2, in which the proxy leverages Web-
hooks callback provided by personal clouds [6] to acquire file
update notifications. We test the performance under some

Fig. 1. Architectural overview of cross-cloud file collaboration with
CoCloud.

Fig. 2. IFTTT-like centralized forwarding proxy architecture.
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typical workloads, and the results are shown in Table 1. Sur-
prisingly, the completion time is overall extremely long (e.g.,
merely a small document file may take several minutes).
They can hardly satisfy the timeliness requirement of most
file collaborations, nor do they provide file consistency guar-
antee or other functionalities like file deletion and folder crea-
tion. As invoking web APIs is inevitable for external file
access, we next try to deeply understand their inefficiency
and possible improvements by furthermeasurements.

First, from four geo-distributed Amazon AWS nodes, we
separately measured the latencies of uploading and down-
loading a 10-MB file to/from four personal clouds (Drop-
box, OneDrive, Google Drive, and Baidu PCS) for 50 times
over a week. Fig. 3 illustrates the average, maximum and
minimum latency results with three clouds (Baidu PCS is
not included because of extremely high latency). On the
whole, cloud performance shows both spatial and temporal
variations (i.e., the latency varies from different nodes and
also fluctuates over time), in line with the measurements in
[2]. It is worth mentioning that some nodes greatly outper-
form others on the latency to a certain cloud, and most of
them only show temporal fluctuation within a narrow range
(e.g., California (CA) node for Dropbox download). By fur-
ther contrasting with other virtual machine providers (e.g.,
DigitalOcean [7]) and analyzing traceroute routing paths, we
can conclude that for each popular cloud, one or several proxies
can be deployed nearby to efficiently access the web APIs.1

In addition, as the web APIs do not provide capabilities
that are adopted in their native client counterparts, next we
present the performance comparison between them to
quantify APIs’ inefficiency. Measurements of Dropbox’s
upload and download are conducted on an Aliyun ECS
Windows server in Silicon Valley. Fig. 4 describes the
results (in log scale) of two typical cases: modifying a small
fraction of a large file (100 MB) and transmitting a batch of
small files (100 � 10 KB). A remarkable latency gap is
observed between the two approaches. Meanwhile, a large
real-world data trace of cloud synchronization [4] indicates
that 52 percent files can be effectively compressed and
18 percent can be deduplicated, and the optimal deduplica-
tion and compression settings tend to be similar among dif-
ferent versions of a given file. Therefore, we should adopt
the capabilities found in native clients, and further exploit the
similar traits among different versions of a file to substantially
reduce data traffic and thus shorten sync time.

3 COCLOUD DESIGN

Guided by the above two key observations from real-
world measurements, we design CoCloud to achieve

sound user-perceived performance for cross-cloud file
collaboration. The framework of CoCloud system along
with cloud proxy deployment scheme is first described.
Next, we specifically present inter-proxy advanced transfer
protocol and data transfer optimization algorithm to opti-
mize cross-cloud transfer, and inter-proxy dataflow sched-
uling algorithm and file collaboration control mechanisms to
balance the data sync timeliness and system overhead.

3.1 System Framework

CoCloud fulfills the whole file collaboration based on the
interaction among components CoCloud Client, Control
Server, and Cloud Proxy. A detailed system framework is
shown in Fig. 5, and functionalities of each component are
outlined as follows.

CoCloud Client. The client program on users’ terminals is
lightweight, and it follows a subscription/push mode. A
user is authorized by Subscription Authorizer based on
OAuth 2.0 framework [8] when he subscribes to CoCloud.
The token returned is stored along with the collaborator list
in the control server. After the initial setup, File Update Mon-
itor captures changes in the sync folder of cloud’s native cli-
ent (instead of the server waiting for callback from clouds),
and it automatically requests synchronization of the
updated files to other clouds.

Control Server. As a central controller, it handles update
notifications by scheduling proper proxies to transfer the
corresponding files. The work is mainly done by the two-
side interfaces Notification Handler and Dataflow Scheduler
together. According to the scale of workloads and available
bandwidths, the scheduler either periodically selects one or
multiple proxies from a candidate set or dynamically
adjusts the number of proxies. On this basis, Metadata Man-
ager is in charge of tackling file inconsistency among collab-
orators, both to maintain the correct version and to restore
the conflicting versions.

TABLE 1
IFTTT Inter-Cloud Backup Completion Time

Backup Service File Size and Type

30-KB Document 10.1-MB Installer

Dropbox to OneDrive 1 min 35 s 8 min 42 s
Dropbox to Google Drive 2 min 9 s 9 min 54 s

Fig. 3. Upload/download latency of a 10-MB file to/from Dropbox(D),
OneDrive(O) and Google Drive(G) by four AWS nodes.

Fig. 4. Average upload/download latency of two typical file workloads by
Dropbox web API and native client.

1. The best download and upload nodes from the above measure-
ment are selected as source and destination proxies respectively (details
are described in Section 3.2).
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Cloud Proxy. Cloud Interface on each cloud proxy inter-
acts with the corresponding cloud by either RESTful APIs
of the cloud or some internal APIs we have detected. Pro-
tocol Handler is repsonsible for data transfer optimization
between peer proxies with an advanced transfer protocol.
In addition, Measurement Agent periodically measures link
bandwidths to pick out proper cloud proxies, and timely
feeds back proxies’ available bandwidths to the control
server for transfer workload dispatch. Data Transfer
Engine is scheduled accordingly to transfer the notified
file updates.

3.2 Cloud Proxy Deployment Scheme

According to our first key observation, one or several
proxies are deployed close to each cloud for efficient
data access, and thus a proxy-per-cloud network architec-
ture is built (Fig. 1). Specifically, for a personal cloud
with centralized servers (centralized cloud, e.g., Dropbox),
which mainly shows spatial performance variation,
CoCloud deploys two proxies with stably low download
and upload transfer latency as the source and destination
proxies respectively. For a personal cloud adopting mul-
tiple edge nodes (multi-node cloud, e.g., Google Drive),
whose best performance is achieved from different nodes
temporally, CoCloud selects proxies by the following
approach.

Initially, we resolve the cloud’s domain name by a
large number of DNSes to obtain a complete list of its
edge nodes (their locations can be analyzed based on the
approach in [9]). Then a test file of size STF is uploaded
to and downloaded from these nodes and transferred
among geo-distributed CoCloud proxies, in order to mea-
sure the latency Tl of every link. The overall bandwidth
BWl of link l can be estimated by STF=Tl. To address the
issue of temporal variation, the latency measurements are
done periodically, and the values are then fed back to the
control server in groups. Accordingly, some proxies with
top download or upload bandwidth (i.e., lowest latency)
to the nearest cloud node are picked out as the source or
destination proxies for each cloud. In practice, we select
the proxies with latency less than þ10 percent the lowest
value. Based on these proxies, cross-cloud data transfer
optimization is further designed for multi-node clouds (in
Section 3.4).

3.3 Inter-Proxy Advanced Transfer Protocol

File creation and modification account for a remarkable pro-
portion of file operations according to the real-world sync
trace [4]. To boost the overall collaboration efficiency, the
cross-cloud data transfer should be well designed. Fortu-
nately, on the basis of the aforementioned proxy-per-cloud
architecture, we can focus on data transfer optimization
between peer proxies. According to our second key observa-
tion, we exploit the similarity among file versions and pro-
pose inter-proxy advanced transfer protocol that integrates
advanced data sync techniques, including adaptively-
chunked deduplication, wisely-adjusted compression, and
multi-level bundling.

Adaptively-Chunked Deduplication. For a large proportion
of files in collaboration, there is only slight modification
from one version to the next. Therefore, the transfer per-
formance can be greatly improved for large files, if only
the modified parts are transferred. In view of this, dedupli-
cation techniques of both fixed-chunk and rolling-chunk
like rsync algorithm [10] were adopted by previous file
transfer systems [11], [12], [13]. Though rsync overcomes
the ineffectiveness of fixed-chunk deduplication, which
occurs when inserting bytes into a file [14], the pre-
designated rolling chunk (window) size may not prove to
be the best choice.

Deduplication ratio g (¼ size of eliminated parts = original file
size), which highly affects the actual traffic (e.g., ð1� gÞ � f
for a file of size f) and transfer time, is determined by both
the content (size, type, and modification scale) and rolling
chunk size c.2 Smaller chunk size brings higher deduplication
ratio when collaborators revise different small files inside a
Linux source code tar file, while larger chunk size can lead
to lower overall overhead when synchronizing local data-
base backup files among partners, as data tend to be
appended in the latter case.

Now that it is impossible to obtain g for a file unless it is
actually transferred, we try to predict the best value based
on our previous observation that the optimal chunk size is
highly consistent among file versions. A specific process is:
We pick a small collection of typical chunk sizes in advance,
from hundreds of bytes to tens of kilobytes. When the file is

Fig. 5. System framework of CoCloud (including interaction among components and their internal module calls).

2. Note that the corresponding metadata size is df=ce � ð4þ 16Þþ g �
ðf=cÞ � 2 for a typical rsync process, which is omitted here for its mar-
ginal overhead compared with the transferred data.
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transferred for the first time, the rolling chunk size is chosen
by the default setting of rsync algorithm.

Thereafter, every time the destination cloud proxy
receives an updated version, it runs the rolling-chunked
deduplication locally with each chunk size ci in the collec-
tion to get the deduplication ratio gi for this file. Note that
the process does not have a real-time requirement, so it can
be conducted whenever there is enough CPU resource, e.g.,
in parallel with file uploading to the destination cloud. Here
we define the chunk-size selection probability vector as the
normalized deduplication ratio list,

~ptest ¼ fgi
.X

i

gig: (1)

Then the correlation between the recorded selection proba-
bilities~pcur and the predicted selection probabilities~pnext is

~pnext ¼ ~pcur � aþ~ptest � ð1� aÞ; (2)

where a is a decay factor and is typically set as n=ðnþ 1Þ for
the nth adjustment. The chunk size corresponding to the
highest probability in ~pnext will be adopted by the deduplica-
tion process next time.

Wisely-Adjusted Compression. Data compression is
deemed as a file transfer optimization technique for non-
duplicate data as well as data after deduplication. However,
an effective compression algorithm is somehow difficult to
select, as any given compression algorithm like gzip, bzip2,
or zlib achieves different compression levels for various
files. We define compression ratio b ¼ file size before compres-
sion = file size after compression. Similar to deduplication, the
compression ratio is determined by both compression algo-
rithm and specific file structure.

Generally for a given file, high compression ratio gener-
ally concurs with long compression time. As the optimal
compression settings (compression algorithms and com-
pression level parameters) among versions of a file also
tend to be consistent, we predict the compression rate of
each algorithm from history, and ~b denotes the recorded
compression ratio list for a specific file.

Consider a complicated scenario where deduplication
and compression are both enabled. We decide the scheme
by comparing the computation rate and the transfer rate.
The transfer rate rt, hash computation rate ra, and compres-
sion rate rb can be inferred from the current network band-
width and recent computations. They are converted into
relative rates with the aid of deduplication ratio g and com-
pression ratio b,

ðr0a; r0b; r0tÞ ¼
1� g

b
ra;

rb
b
; rt

� �
: (3)

Then the overall computation rate (data generation rate) of
CPU can be represented by

rc ¼ 1

1=r0a þ 1=r0b
¼ ð1� gÞrarb

bð1� gÞra þ brb
: (4)

In (4), the best deduplication ratio g is adopted. Then each
bi in the compression ratio list~b is evaluated. If 8bi; rc < rt,
the calculation part is deemed as the bottleneck and thus
compression will be disabled. Otherwise, we select the max-
imum bi that satisfies rc

i � rt for compression.
Multi-Level Bundling. To further boost transfer efficiency

and reduce overhead, bundling mechanisms in multiple
levels can be supplemented to the protocol. First, a persis-
tent network connection is set up between peer cloud prox-
ies, which is reused for all the buffered files, instead of one
connection per file transfer. Moreover, large files are
divided into a number of transfer blocks for data recovery
consideration, whose size �Sb can be typically set as 4 MB
based on network throughput and transmission failure rate
[15]. Asynchronous application-layer acknowledgements
are adopted instead of stop-and-wait ACKmode, as transfer
blocks are not directly related to each other. Only unac-
knowledged blocks need to be retransmitted when network
interruption or congestion occurs.

Finally, batching files smaller than the block size is
designed as a fine-grained bundling mechanism. A bundle
block is built with as many cached small files as possible.
The hash values of the files are calculated, and then the con-
tents of every file along with the corresponding hash and
size are encapsulated into the bundle block. Moreover, a tag
byte that indicates the special block is added at the head.
The aggregate file size, along with the corresponding hash
and file size set as well as the tag byte, should be less than
�Sb. When the destination proxy receives the bundle block, it
retrieves the files based on size segments and checks their
hashes to confirm the transfer data. Compression will be
further conducted on the bundle block, if the files all belong
to types with high compression ratio.

We conclude the whole inter-proxy advanced transfer
protocol as Fig. 6. The process can be described by steps as
follows:

Step 0: The source proxy is notified of the transferred
files, and it downloads them to its buffer.

Fig. 6. The whole process of inter-proxy advanced transfer protocol.

60 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 1, JANUARY 2018



Step 1: The source proxy batches metadata of all buff-
ered files and sends it to the destination proxy to
compare the file version.
Step 2: For files to be transferred, different schemes
are adopted, depending on the current status and
relation between the file size Sf and the transfer
block size �Sb:
– if Sf � �Sb and it is an updated file, then do roll-

ing-chunked deduplication and compression,
and form transfer blocks;

– if Sf � �Sb and it is a new file, then do compres-
sion and form transfer blocks;

– if Sf < �Sb, then bundle several files into a special
block, and do compression.

Step 3: All the transfer blocks for the buffered files
are transferred in a network connection, and async
ACKs for the successful ones are returned from the
destination proxy.
Step 4: The destination proxy handles the data corre-
spondingly (decompression, rebuilding files with
chunks, or de-bundling).
Step 5: Received files are uploaded to the destination
storage cloud, and the best deduplication and com-
pression parameters are predicted for future use
when CPU is idle.

3.4 Cross-Cloud Data Transfer Optimization
Algorithm

Considering that cloud proxies may suffer from temporally
poor performance of network from/to multi-node clouds,
CoCloud deploys a group of proxies with low latencies for
every multi-node cloud, and the best one can be selected
periodically (see Section 3.2). In fact, if we adopt multiple
proxies concurrently to dispatch the requested workloads,
the cross-cloud data transfer can be further optimized. As
the control server has collected three groups of latencies
(namely the download latency from the source cloud, the
upload latency to the destination cloud and the inter-proxy
transfer latency), it can calculate the bandwidth of each link
and then build up a Directed Acyclic Graph (DAG) like
Fig. 7 with link bandwidths marked as edge weights. Then
the goal is to determine a number of proxies that minimizes
the overall transfer latency.

It seems that the problem can be reduced to Maximum
Flow problem as optimal flow (or workload) allocation is
involved. However, we show that the solutions to Maximum
Flow are not available here. First, those solutions (algorithms)
focus on the flow between source and destination cloud
nodes, whereas addressing all the available cloud nodes will

result in considerable overheads. More importantly, the
aforementioned inter-proxy transfer protocol requires a file
to be downloaded to the proxy before it is transferred, and
the probable dataflow reduction after deduplication or com-
pression violates the flow conservation principle. Rather, we
design a two-step heuristic transfer optimization algorithm
here to reduce the transfer latency to a near-minimum extent.

Here we mainly consider a general network topology
between two multi-node clouds (just as depicted in Fig. 7),
where a proxy may work for both clouds. Suppose that the
size of current workload is w and the total number of cloud
proxies is n. For two proxies i and j, we define the down-
load bandwidth of proxy i from the nearest source cloud
node as BWsi, the upload bandwidth of proxy j to the near-
est destination cloud node as BWjd, and the inter-proxy
transfer bandwidth between i and j as BWij.

The first step is to use multiple proxies to concurrently
download parts of the workload from the closest cloud
node, which are then converged to a certain proxy.
The workload allocation can be expressed as w ¼ P

i wi;
i ¼ 1; 2; . . . ; n. As the aforementioned transfer protocol
(in Section 3.3) is adopted between proxies, here we also
define the calculation rate as Cij (generally all Cij’s are
equal), and h ¼ ð1� gÞ=b represents the transfer ratio fore-
casted by file history traits according to the protocol. Then
the transfer time of the workload from source cloud to
proxy j through proxy i (i ¼ 1; 2; . . . ; n) is

tij ¼ wi � ð1=BWsi þ h=BWij þ 1=CijÞ: (5)

Note that when a proxy i serves for both clouds, the inter-
proxy transfer is not needed (i.e., wi=BWii ¼ 0). It is mani-
fest that the workload allocation achieves optimal only
when all tij’s are equal and they can be represented by tj.

Then the second step is to determine the proper proxy for
converging and uploading the workload to the destination
cloud. Since there are only a few deployed proxies, we can
simply enumerate them for optimal full path estimation.
Concretely, for the selected transfer server j, the overall
transfer time is tj þ w=BWjd. By this means, proxy j with
minimum overall transfer time is determined as the destina-
tion cloud proxy for workload w.

Multi-Copy Transfer to One Cloud. In most cases, a file need
be collaborated with a number of users from the same desti-
nation cloud. For some personal clouds that support file col-
laboration service, the best way is only transferring one file
copy to the share folder among these destination users, and
then they can leverage the cloud own collaboration mecha-
nism. However, there are still a few personal clouds that are
mainly used for data backup and do not well support file col-
laboration. For these collaboration-unsupported clouds,
multiple file copies are inevitable to be transferred to the
same destination cloud. Particularly, CoCloud reuses the
download proxies and only transfers multiple copies by
the selected upload proxy. This mechanism can well reduce
the overall transfer time, which is only tj þm � w=BWjd for
uploadingm copies to the destination cloud.

Transfer with Centralized Cloud. The above transfer optimi-
zation algorithm can be adopted between a multi-node cloud
(cloud with distributed nodes) x and a centralized cloud
(cloud with centralized servers in one location) y with little

Fig. 7. A network topology example of cross-cloud transfer with multiple
proxies.
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modification. For data transfer from cloud x to cloud y, the
only difference is that CoCloud need not select the proxy
for data uploading, but just leverages the previously
deployed destination cloud proxy. Conversely, for data
transfer from cloud y to cloud x, the whole file is down-
loaded by the unique source cloud proxy, and only one des-
tination cloud proxy is determined according to the
minimum overall transfer time. The corresponding transfer
process is illustrated in Fig. 8.

3.5 Inter-Proxy Dataflow Scheduling Algorithm

During practical file collaboration, data sync is always
expected to occur as soon as a user updates files, for better
user experience as well as version conflict reduction. How-
ever, the massive cross-cloud dataflow induced by a large
scale of file workloads (especially those cannot be optimized
with the protocol in Section 3.3) may bring heavy overhead to
all proxies. The above transfer optimization (in Section 3.4)
aims at a given number of proxieswithout considering system
overhead, and thus it may not fulfill the scalability require-
ment, especially for bursty workloads. Therefore, we next
design a two-stage online algorithm named inter-proxy data-
flow scheduling algorithm including update priority assignment
and file workload dispatch to guarantee well acceptable
collaboration experience while reducing the system overhead
asmuch as possible.

The first stage starts when file update notifications arrive.
Each notification includes update operation, arrival timestamp,
and corresponding file metadata. They are added to a prior-
ity-based message queue named Notification Queue. In
this stage, we optimize the overall performance by adjusting
the order in which the notifications are handled (i.e., assign-
ing priority).

First Come First Served (FCFS) and Shortest Task First
(STF) are two typical scheduling policies. They try to opti-
mize the overall completion time by arranging some tasks
to be completed earlier. However, directly adopting either
policy may strongly degrade performance: with FCFS, small
tasks have to wait long even if they come just a little later
than a large task; with STF, a large task is probably starved
when many small tasks come continuously.

In our scenario, users are less sensitive to the collabora-
tion timeliness of large files than that of small files. There-
fore, we take both file update arriving time and file size into
account. Define File Update Priority (FUP) as the following
virtual completion time metric, and the file update with the
smallest FUP value will be handled first

FUP ðkÞ ¼ tkA þ tkOT ; 8 file update k; (6)

where tA corresponds to the arrival timestamp attached in the
file update notification, and tOT represents the overall cross-
cloud transfer time for a file of size Sf .

Considering the general cross-cloud transfer topology in
Fig. 7, with two designated proxies i and j (workload dis-
patching to proxies is described later), tOT can be estimated as,

tOT ¼ Sf � ð1=BWsi þ h=BWij þ 1=Cij þ 1=BWjdÞ; (7)

among which download bandwidth from source cloud
BWsi, upload bandwidth to destination cloud BWjd, inter-
proxy transfer bandwidth BWij, calculation rate Cij and
transfer ratio h are acquired from the periodical measure-
ments or forecasted by history traits of a file (as shown in
Section 3.4). Note that when a proxy i serves for both
clouds, the inter-proxy transfer is not needed, and tOT can
be calculated by Sf � ð1=BWsi þ 1=BWidÞ.

It is worth mentioning that collaboration operations like
folder creation and file deletion do not involve cross-cloud
data transfer, so they can be simply finished by the destina-
tion cloud proxy. Correspondingly, CoCloud sets a fixed
small tOT value for them, and thus these low-cost operations
are most likely to be handled before common file operations
(creation or modification).

In the second stage, the FUP-ordered update notifications
are classified by the source cloud (or destination cloud for
the folder creation and file deletion operations) and added
into different Cloud Caching Queues. For a given cloud, when
the queue is relatively short, only two proxies with top
download/upload bandwidth are used to serve operations
to the cloud. The handling thread of every Cloud Queue noti-
fies the corresponding proxy of the file updates in sequence.
All proxies upload and download different files with multi-
ple threads concurrently, to make the best of their available
bandwidths. Meanwhile, a background thread monitors the
real-time available bandwidth BWa in each proxy to avoid
congestion caused by too many concurrent file workloads.

Adaptive Proxy Adoption Scheme. To balance the timeliness
of bursty workloads and system overhead, here we further
design an adaptive proxy adoption scheme. Additional
proxies will be adopted when bandwidth shortage occurs in
the working proxies without fixed periodicity. Specifically,
whenever BWa � BWo � uc, where BWo represents the ini-
tially measured overall bandwidth of the proxy and uc is a
congestion threshold, a proxy in the same location (for cen-
tralized cloud) or another proxy in the selected proxy set (for
multi-node cloud) is added to balance the load. Suppose that
there are currently n source (or destination) proxies
(P ¼ fpig; i ¼ 1; 2; . . . ; n) for a certain cloud. To fully utilize
the available bandwidth of the existing proxies, only when

BWi
a � BWi

o � uc; 8pi 2 P; (8)

this number increases to nþ 1. In addition, we also set a lei-
sure threshold ul to save proxy resource. Here only when

BWi
a � BWi

o � ul; 8pi 2 P; (9)

the proxywith lowestBWo will be recycled after finishing the
current file transfer (but not considered for newfileworkload
dispatch), and then the number of proxies decreases to n� 1.
We adopt such a lazy decreasemechanism since it can reduce

Fig. 8. Transfer between multi-node cloud and centralized cloud.
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the possibility of proxy number fluctuation. Note that, to
reduce network overhead, all proxies are scheduled by the
control server separately and no information is transferred
among proxies.

Based on the in-use proxies, we finally consider workload
dispatching. As all the proxies (source or destination) for a
centralized cloud are in the same location, the source and desti-
nation proxies with highest BWa are selected for the next file
workload. In contrast, the proxies for a multi-node cloud are
geo-distributed, and we estimate the real-time bandwidth of
each cloud-proxy-proxy-cloud path (in Fig. 7) as

BWp ¼ 1

1=BWs
i þ h=minðBWs

o ; BW
d
i Þ þ 1=BWd

o

; (10)

among which h is the aforementioned transfer ratio, and
BWs

i ,BW
s
o ,BW

d
i ,BW

d
o represent the input and output band-

widths of each pair of source and destination proxies. The
source and destination proxy pair corresponding to the larg-
est BWp will be selected for the next transfer. Note that the
above process of proxy selection is conducted by the control
server based on real-time proxy bandwidths piggybacked in
file update status application-layer acknowledgements. Partic-
ularly for an updated file, we give priority to transferring it to
those destination proxies with its previous versions for
deduplication, and thus other destination proxies can be
eliminated before the bandwidth-based proxy selection.
With this multi-level proxy selection mechanism, we are able to
not only balance the workloads among each proxy but also
save their transfer bandwidths to a large extent.

3.6 File Collaboration Control Mechanisms

To further boost the collaboration efficiency and guarantee
data consistency, additional control mechanisms are
adopted in both the client side and the control server. Fig. 9
depicts the collaboration control process of CoCloud,
involving both the above scheduling algorithm and the fol-
lowing control mechanisms.

Local Redundant Update Elimination Mechanism. We first
consider control optimization in CoCloud clients. The col-
laboration directory is monitored by the local file system
interface and the control server are notified of file updates
in batch periodically. This avoids the considerable overhead
of frequent notifications with update inquiry poll or cloud
callback mechanism [6] which is often adopted by the
IFTTT-like centralized forwarding architecture (in Fig. 2).

More importantly, since file update operations are cached
in File Update Queue during the interval, some redundant or
unnecessary updates can be eliminated locally (e.g., a file
modification operation is removed once a deletion or
another modification operation to the same file occurs sub-
sequently). This elimination mechanism can reduce the real
update workloads to a considerable extent.

Hash-Based Conflict Handling Mechanism. In addition, as
an advanced functionality, file versioning is restricted to
most clouds’ native collaboration without public APIs pro-
vided. However, version conflict is very likely to occur in
collaboration, when each user successfully updates a file
version in his own cloud and these versions are notified
for cross-cloud transfer concurrently. To reduce control
overhead and guarantee scalability, CoCloud tackles the
consistency problem by a lightweight hash-based conflict
handling mechanism, instead of database locking mecha-
nism or Paxos-based qurum locking protocol [16]. We elabo-
rate the mechanism as follows.

A hash table named Conflict Handling Hash Table (shown
in Fig. 9) is maintained in the memory, storing hash indexes
of file update notifications being processed. Before an
arrived update notification is added to Notification Queue, its
hash value is calculated by MD5 algorithm based on file
name and collaboration group ID, which are attached in file
metadata. When multiple update notifications of the same
file arrive simultaneously from users of different clouds, the
earliest-arrived one will possess an item in Conflict Handling
Hash Table. This one is deemed as the correct version, and
other later-arrived versions to the same hash item all experi-
ence hash conflicts. Such a conflicting version will be
renamed and moved to the owner’s backup folder to avoid
lost update problem [17]. Meanwhile, a hint of file conflict and
the corresponding backup will be sent to the owner in time.
Then the conflicting file can be merged with the original cor-
rect version manually.

On the other hand, the correct file version will keep pos-
sessing the corresponding hash index (defined as a lease) until
file updates to all collaborators are fed back from the destina-
tion cloud proxies (through file update status ACKs in Fig. 9).
The lease ends and the hash item is removed then, thus
unlocking the subsequent operations to the same file. Note
that the new versions of the file arrive during the lease are
also viewed as conflicting versions, and thus they are not
transferred to collaborators but backed up to owners. In addi-
tion, a failed update can be tackled by reputting the update

Fig. 9. The complete file collaboration control process of CoCloud (file updates from different clients are scheduled in the control server).
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notification into Notification Queue for retransmission and
extending the lease of hash index, if no new update notifica-
tion of the file arrives when the current lease ends. However,
the extended lease is unprotected, which ends at once (along
with cancel of retransmission) whenever a new file update
arrives. Such a design can prevent a hash index from being
obsolete for a long time due to transfer errors, and it also guar-
antees fairness among different file versions. Besides han-
dling conflict, this hash-based mechanism can also remove
redundant file updates when previous updates are cached
(similar to the above local eliminationmechanism).

4 PERFORMANCE EVALUATION

In this section, we first present the implementation of
CoCloud prototype in details. On the basis of proxy deploy-
ment and real-world data trace analysis, we widely conduct
measurements on the effectiveness of the above designed
protocol and algorithms, in different scenarios with a vari-
ety of typical real-world workloads. Finally, we study the
end-to-end collaboration efficiency among the popular
cloud services.

4.1 CoCloud Prototype

Wehave implemented a prototype of CoCloud framework in
approximately 8,000 lines of both Java codes for the control
server and cloud proxies andC# codes for a lightweightWin-
dows client. The prototype can provide efficient file collabo-
ration service among users of four personal clouds: Dropbox,
OneDrive, Google Drive, and Baidu PCS. The source code is
available at https://github.com/CoCloud/cocloud-demo.

Particularly, the Data Transfer Engine module (shown in
Fig. 5) plays a key role in efficient data sync. We implement
the rsync algorithm ourselves without calling libs, conve-
niently adding the mechanisms for optimization while
avoiding the extra overhead when invoking a lib. To reduce
storage overhead, the cached files are recycled periodically
in idle time following Least Recently Used (LRU) scheme. In
addition, the bandwidth measurement and feedback as well
as workload dispatch rely on the interaction between each
cloud proxy and the control server with Apache MINA [18]
framework.

The Cloud Interface module supports four widely applied
clouds currently, and new clouds can be easily added. It is
worth mentioning that by capturing and analyzing network
traffic of Baidu NetDisk APP, we have detected a number of
Baidu PCS URIs adopted internally, which can better utilize
upload and download bandwidths. We encapsule the inter-
nal functions into APIs, and adopt them instead of Baidu
RESTful APIs to boost overall collaboration efficiency.
Besides, when a number of files or transfer requests arrive
simultaneously, CoCloud also leverages multiple threads to
accelerate upload and download APIs as well as inter-proxy
transfer corresponding to the system design. At last, we
implement CoCloud client on Windows platform, utilizing
each cloud’s OAuth interface for user authorization and Fil-
eSystemWatcher for file update monitoring.

4.2 Experiment Setup

Based on our first key observation, we deploy cloud proxies
in a number of geo-distributed AWS EC2 nodes (in North
Virginia, California, Oregon, Ireland and so forth) and an

Aliyun ECS node (in Beijing). The proxies corresponding to
each cloud service are selected according to the periodical
latency measurements in Section 3.2. By this means, suffi-
cient throughput is guaranteed between cloud proxies and
corresponding cloud storage servers. Additionally, we take
an Aliyun Silicon Valley ECS node as the control server,
which can interact with all proxies with little latency.
California EC2 node is also used to simulate IFTTT forward-
ing proxy for performance comparison, because it performs
overall best among clouds for API access.

In addition, to evaluate the scalability of our scheduling
algorithm, we take the aforementioned cloud synchroniza-
tion data trace [4] for deep analysis. It was collected from
153 users of six popular cloud services with 222,632 files
over half a year. Particularly, we select the records on
June 25, 2013 from 16:19 to 18:01 for scalability evaluation of
dataflow scheduling algorithm, which has totally 8,260 files
ranging from 3 Bytes to approximately 35 MB, and mainly
includes two file modification (task arriving) bursts corre-
sponding to two intensive task scheduling periods.

4.3 Performance of Inter-Proxy Advanced
Transfer Protocol

To evaluate the efficiency of inter-proxy advanced transfer
protocol, we first evaluate the protocol performance on small
files (the size threshold �Sb is set as 4 MB here according to
[15]), which is the most common scenario in collaboration.
Typically, we conduct the evaluation by transferring a large
batch of small files (100� 10 KB), and measure the inter-
cloud transfer time between each pair of clouds (Dropbox,
OneDrive, Baidu PCS) in both directions, as shown in Fig. 10.

Cloud proxies in Beijing, California, and Virginia serve for
Baidu PCS, Dropbox, and OneDrive respectively, since they
are either alongwith or close to the corresponding cloud stor-
age servers. To avoid the influence of deduplication and com-
pression, we randomly generate contents of the files. We also
evaluate the transfer time of IFTTT-like forwarding approach
for contrast. Although performance disparities are found
among different cloud peers due to network conditions,
CoCloud always outperforms the contrastive approach, with
transfer time reduction up to 59.54 and 36.53 percent on aver-
age. The comparison confirms the effectiveness of the multi-
level bundlingmechanismdesigned in the transfer protocol.

Besides small files like documents, partners also often col-
laborate on some relatively large files such as source codes,
and even videos. Thus we also conduct the performance
evaluation on large files, with FFmpeg source codes (an
open-source program to record and convert audio and video)
[19] as a sample.We collect 10 versions of code tar files (about

Fig. 10. Cross-cloud transfer time of a batch of small files among Drop-
box(D), Baidu(B), and OneDrive(O).
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50-60MB in size, updated every 2 months) and transfer them
between peer clouds sequentially according to the version
number. Fig. 11 describes the transfer time between Dropbox
and Baidu PCS, as well as between Dropbox and OneDrive.
Likewise, the IFTTT-like forwarding approach serves as a
comparison. Similar to the transfer of small files, the
improved deduplication and compression mechanisms in
the transfer protocol can speed up the transfer up to 10:40�
and 6:38� on average in contrast to the forwarding approach.

We further evaluate the effectiveness of the adaptively
chunked deduplication mechanism in the transfer protocol.
Concretely, we conduct measurement on the network traffic
incurred among the 10 different versions of FFmpeg source
codes. Note that the time of deduplication varies little with
different chunk sizes, so the network traffic is positively
related to the overall latency. The metric Transfer Traffic
Ratio (TTR) is defined as the ratio of the traffic of a chunk
size to the theoretically optimal one.

Fig. 12 shows the transferred data ratio of CoCloud in
comparison with that of several typical chunk sizes, along
with the theoretically optimal curve with TTR ¼ 1. We can
observe from the figure that the transfer traffic of CoCloud
converges to the optimal curve very fast, outperforming all
the fixed chunk sizes. According to our measurement, the
real transfer traffic of CoCloud also keeps steady among dif-
ferent versions, which proves that the above mechanism
promotes the efficiency as well as robustness of the cross-
cloud data transfer.

In addition, we evaluate the wisely-adjusted compression
mechanism by measuring and comparing the transfer and
computation rates. For all the experimental proxies, computa-
tion is not the bottleneck, and thus we are able to adopt the
algorithmwith the highest compression ratio for compression
every time. In reality, by overall considering network and
computation overhead, we find that the computations for all
deduplication, compression and adjustment in CoCloud

occupy a relatively small proportion of the whole transfer
time. Besides, in most time, computation can be conducted in
parallel with data transfer operations, well utilizing the idle
CPU resource. Therefore, the advanced transfer protocol
adopted brings little overhead in practice.

4.4 Performance of Cross-Cloud Data
Transfer Optimization

For clouds adopting multiple edge nodes for API access,
CoCloud deploys multiple proxies for transfer optimization.
We next take the representative multi-node cloud Google
Drive as an example to evaluate performance of the transfer
optimization algorithm. Specifically, three AWS servers
(California, Virginia and Ireland) are selected as Google
Drive proxies based on the initial measurement. Here we
transfer the aforementioned FFmpeg source codes from
Google Drive to the other three clouds, and dispatch the
transfer workloads to the three proxies according to their
respective available bandwidths.

Fig. 13 illustrates the overall transfer time of CoCloud
algorithm, in comparison with adopting only one proxy
(California node) for Google Drive (“Baseline” in the
figure). While Baidu PCS proxy assembles workloads from
all three Google Drive proxies, Dropbox and OneDrive
proxies each overlaps one Google Drive proxy. Among
them, the transfer performance to Baidu PCS experiences
the most obvious promotion (63.82 percent reduction in
overall time), which well shows the efficiency promotion
for multi-node clouds.

In addition, CoCloud can guarantee considerably low
overall time when a file is transferred to a number of collab-
orators, who are users of the same cloud. A typical scenario
is when a Dropbox user transfers the edited files to several
of his Baidu PCS partners. Fig. 14 describes the comparison
between CoCloud and the IFTTT-like forwarding approach
on the total transfer time of a 10-MB Zip file or 200 � 10-KB

Fig. 11. Cross-cloud transfer time of FFmpeg source codes among Drop
(box), Baidu, and One(Drive).

Fig. 12. Performance of adaptive chunk size selection (using one
FFmpeg version at a time).

Fig. 13. Transfer time reduction with multi-proxy optimization for multi-
node cloud Google Drive.

Fig. 14. Transfer time of two typical file workloads to multiple destination
users.
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small document files (the proxy settings are the same as
above). As the user of the destination cloud increases, the
transfer time of IFTTT-like forwarding approach rises dra-
matically, whereas CoCloud shows a quite slow and steady
increasing trend. Particularly, the promotion for the 10-MB
file is up to 15� when the number of users is only 8. This is
because we only need to send one replica of the file to the
destination proxy, and then upload one copy for each col-
laborator, which is much faster than simply forwarding the
file n times for n collaborators.

4.5 Performance of Inter-Proxy Dataflow
Scheduling

Here we first measure the throughput when files of different
sizes are transferred between peer cloud proxies. The
results of some typical peers are plotted in Fig. 15. The
figure indicates that higher throughput is achieved, as
the size of each file increases while the increasing rate
drops. This can well support not only the aforementioned
setting of transfer block size threshold, but also mechanisms
of multi-thread file transfer and congestion avoidance in
CoCloud dataflow scheduling algorithm, i.e., an appropri-
ate quantity of files are transferred concurrently. According
to the bandwidth measurement and the file sync trace anal-
ysis, the congestion threshold uc and the leisure threshold ul
can be set as 20 and 60 percent respectively.

We next conduct a large-scale simulation with the
selected file update trace (in Section 4.2) to evaluate the scal-
ability of dataflow scheduling algorithm. For sync timeli-
ness consideration, the average cross-cloud file transfer
time is an important metric. Thus we focus on the ratio of
CoCloud average transfer time to that of two contrastive
scheduling algorithms, FIFO and group-based fair sharing
(G-Fair). In our scenario, the G-Fair algorithm schedules a
group of tasks (up to 10) concurrently to share the band-
width resource. Note that here we adopt one pair of source
and destination proxies for data transfer, and the average
path bandwidth is set as 10 Mbps according to the real-
world measurement of deployed proxies.

Fig. 16 plots the variation trend of two ratios as the num-
ber of file updates increases.We observe that the ratio curves
drop dramatically at the end of the test duration when a few
large files arrive. This is because a number of following small
files need wait for available bandwidth resource by both two
contrastive algorithms, while CoCloud boosts the resource
utilization by postponing the large files to proper places.
Accordingly, the ratio curves experience a slowly increase
trend in the middle period, since the previous large files
should be handled at that time. As a whole, the average

transfer time ratios of CoCloud to both algorithms are
around 50 percent on average and just over 60 percent to the
maximum. The obvious promotion indicates that CoCloud
can well guarantee the timeliness of a large number of con-
currently arriving file updates.

We also conduct another large-scale simulation (with the
same data trace as above) to evaluate the effectiveness of
the adaptive proxy adoption scheme. Here we focus on the
number of proxies adopted by a cloud during the workload
transfer period, which can well reflect the system overhead.
According to the actual situation of EC2 nodes, the available
bandwidth at a proxy is 50 Mbps to the maximum, which is
shared by the transferred workloads and varies over time.

Fig. 17 depicts how the number of proxies varies as the
workloads are scheduled for cross-cloud transfer. During
the whole process, CoCloud keeps quite low number of
adopted proxies (less than 2 on average and up to 3 only for
a short period). At the same time, the number variation
shows an overall stable trend with enough long periodicity
of proxy number changes (about 31 percent of the total
transfer time on average), which indicates the cost brought
by proxy increase and decrease is also well acceptable. As
shown in the figure, in contrast with adopting only one
proxy for each cloud, the adaptive proxy adoption scheme
can achieve 26.5 percent reduction in the overall transfer
time for the typical workloads.

On the basis of the above simulations, we further evalu-
ate the system scalability of CoCloud based on real-world
service deployment and the whole file update trace of 153
users as illustrated in Section 4.2. To better utilize the data
trace, we have removed some dirty data like zero-size files,
and also revised the sparse file update timestamps to make
them more intensive and closer to the reality. In addition,
the users are divided into collaboration groups at random,

Fig. 15. Impact of file size on the inter-proxy network throughput. Fig. 16. Performance of CoCloud scheduling in comparison with typical
scheduling algorithms.

Fig. 17. Proxy number variation and transfer time reduction with adaptive
proxy adoption.
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and we simulate their sync behaviors by a number of con-
current threads. Next we focus on both key factors for scal-
ability, i.e., sync timeliness and system overhead.

By monitoring the control server for 4 hours during the
collaboration process, we measure both variations of the
average file transfer time (calculated every 10 seconds) and
the server’s CPU and memory usages. As shown in Fig. 18,
the average file transfer time (just over 3 seconds) is well
acceptable by adopting our scheduling algorithm with
adaptive proxy adoption scheme. According to our experi-
ment on the whole data trace, only when file updates arrive
in bursts does the average file transfer time increase, and
correspondingly the proxy number of a cloud increases up
to 3 (in accordance with the above simulations). At the same
time, both CPU and memory utilization rates are quite low
(both below 20 percent). Given the control server is not in
charge of any data transfer, deploying one server is enough
to handle file updates from a very large scale of users.

4.6 End-to-End Collaboration Performance

We finally consider the performance of multi-user end-to-
end file collaboration. To achieve this goal, we simulate the
scenario that users of different cloud services use CoCloud
for file collaboration simultaneously. It is manifest that the
end-to-end data sync time is highly influenced by the
upload and download latencies of its native client. As users
in China are blocked from accessing Dropbox and Google
Drive, and Baidu client sync is much slower than the other
three clouds, here we only show CoCloud performance
among US users of Dropbox, OneDrive, and Google Drive.

Figs. 19 and 20 give their end-to-end collaboration time of
two typical workloads (a 10-MB Zip file and a batch of docu-
ment files around 10 KB each), in comparisonwith the perfor-
mance of the native collaboration functionality (labelled by
the “Native client” border). The figures indicate that an end-
to-end CoCloud file collaboration for the above two typical

workloads takes about 25 seconds on average, almost achiev-
ing the same level of efficiency as the intra-cloud collabora-
tion (only 1:39� and 1:82� collaboration time on average).
Particularly, synchronizing 50� 10-KB files from Dropbox to
OneDrive takes less than 20 seconds, even outperforming the
intra-OneDrive collaboration performance.

5 DISCUSSION

In addition to the aforementioned system design and imple-
mentation, a few more issues also need to be considered,
and we discuss them as follows:

Architecture of Cross-Cloud Collaboration. To provide effi-
cient cross-cloud file collaboration, building up a unified
interface upon the cloud RESTful APIs is obviously the ideal
way. However, such advance is impeded by competitors in
the market of personal cloud storage due to its low benefit-
cost ratio. An intuitive alternative is to build up a personal
cloud service, whose interface is compatible with all exist-
ing clouds. A number of issues such as sync protocol
between the cloud and its client, client capabilities, should
be well considered then, which increases implementation
complexity as well as system costs. Correspondingly, our
solution CoCloud mainly works as a transfer middleware
among clouds. Except for a lightweight client that serves as
a monitor, we utilize the sync capabilities of cloud native cli-
ents. With the design of per-cloud nearby-proxy deploy-
ment and advanced transfer protocol, CoCloud can be
expected to efficiently serve among clouds with collabora-
tive functionality and high user-perceived performance.

Security and Privacy Issues.Apart from the architecture, the
data security and privacy of such a cloud service is also often
concerned, as a survey shows that the protection becomes
increasingly significant [20]. The OAuth 2.0 framework [8] is
currently adopted for authorization by most personal cloud
services, whenever users operate the stored data through a
third-party service. However, a considerable number of users
maywish to prevent the third parties or even cloud providers
from accessing their confidential data. As OAuth 2.0 authori-
zation is not enough in this scenario, encryption or erasure
coding (also for redundant backup) can be conducted on
these files to further improve security. Specifically, the confi-
dential files can be encrypted before uploaded to the cloud
(the file owner need keep the encryption key), or encoded at
the client and uploaded to different clouds. Unfortunately,
all the security protection approaches will sacrifice the
overall collaboration performance, and they can hardly be
adopted for cross-cloud collaboration. We will deeply con-
sider the security and privacy issues in our futurework.

Fig. 18. Transfer time variation and resource utilization of control server
in real-world service deployment.

Fig. 19. End-to-end collaboration time of a 10-MB Zip file among three
popular cloud services.

Fig. 20. End-to-end collaboration time of 50 documents (around 10 KB
each) among three popular cloud services.
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SystemCost-Effectiveness.At last, for providing such a cross-
cloud collaboration service, the high traffic caused by the fre-
quent collaboration requests is innegligible but inevitable.
Although the advanced transfer protocol can reduce the net-
work traffic while the dataflow scheduling algorithm can
reduce the bandwidth overhead to some extent, they also
bring about extra storage and computation overheads. Never-
theless, as CoCloud can break through the “walled-garden”
of cloud services and provide an efficient cross-cloud collabo-
ration service, we believe the benefit brought by the high
requirement of a certain proportion of users (and maybe
some new clouds) overwhelms the cost of those overheads.

6 RELATED WORK

There has been a quantity of work on the increasingly popu-
lar cloud storage service, which our work is mainly related
to in the following four aspects.

Multiple Cloud Management. Some previous studies have
proposed controlling multiple cloud services for redundant
data backup. DepSky [21] builds a dependable cloud-of-
clouds by distributing coded data into different public
clouds, while MetaSync [22] and UniDrive [15] serve per-
sonal cloud users by adding more performance consider-
ation and CYRUS [23] further considers privacy and
reliability issues. However, these personal data backup
managers require binding multiple clouds simultaneously
as their backends and locally dividing every file into redun-
dant chunks. In contrast, CoCloud is an efficient Dropbox-
like end-to-end full-file collaboration service among hetero-
geneous personal clouds.

Cloud Storage Capabilities. There have been quite a few
relevant mature techniques these years, like Content
Defined Chunking (CDC) [12], [13], [24], delta encoding,
and deduplication [10], [25]. While these techniques are
implemented in the native clients of some personal cloud
services, the APIs provided for third parties support none.
According to our proxy deployment scheme, CoCloud
proxies are located near enough to API servers to over-
come their inefficacy. Access to these proxies is very effi-
cient in virtue of the inter-proxy advanced transfer
protocol, as if the cloud had provided the capabilities to
third parties.

Optimization in Cloud CDN.Adozen of studies work on the
performance of cloud CDN, to reduce tail latency [26], [27],
[28], to provide replication cost-effective placement and con-
sistency [29], [30], [31], or to balanceworkloads and guarantee
inter-node bandwidth [32]. Unlike the previous work aiming
at improving the performance of target clouds, CoCloud can
optimize the overall transfer latency between two (multi-
node) clouds. In addition, FUP defination involves virtual
time, which is also adopted by the previous work [33], [34].
Aimed at the collaboration scenario, CoCloud leverages such
a mechanism to improve the scheduling efficiency. Based
on the priority assignment and file workload dispatch
schemes, the inter-proxy dataflow scheduling algorithm well
balances the collaboration timeliness and system overhead.

Cloud Measurement Studies. A variety of previous research
papers measure and benchmark performance of multiple
clouds, from public clouds [35] to personal cloud services
[4], [9]. In addition, the architecture of mobile cloud storage
services and their internal sync protocols are presented in

[36], and QuickSync [14] further addresses the synchroniza-
tion inefficiency problem of these mobile cloud services.
Some other papers elaborately study the well-performed
Dropbox, by either pinning the inside architecture [11] or
improving the inefficiency of some client capabilities [37].
Likewise, the internal structure of UbuntuOne is deeply
studied by measurements in [38]. Note that the above
measurements are all conducted on the clouds’ native cli-
ents. Besides, several papers have studied personal cloud
web APIs, like [2], [39]. In contrast with them, we further
make performance comparisons between web APIs and
native client capabilities, and more importantly, observe
that proxies can be deployed close to clouds to overcome
API inefficacy.

7 CONCLUSION

In this paper, we address the cross-cloud file collaboration
requirement, attempting to achieve sound user-perceived
performance based on the inefficient cloud web APIs. We
first reveal by measurements that one or several proxies can
be deployed close to each cloud to overcome the web API
inefficiency. On this basis, we propose CoCloud for file col-
laboration among heterogeneous clouds. It includes a uni-
fied inter-proxy advanced transfer protocol and a cross-
cloud data transfer optimization algorithm, as well as
an online inter-proxy dataflow scheduling algorithm and
collaboration control mechanisms. We implement an open-
source CoCloud prototype to provide file collaboration
service among four popular personal clouds. Extensive
evaluations demonstrate that the system can well guarantee
low cross-cloud transfer latency as well as high scalability.
Its performance even exceeds the intra-cloud collaboration
performance in some cases.
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