
On the Synchronization Bottleneck of OpenStack
Swift-Like Cloud Storage Systems

Mingkang Ruan , Thierry Titcheu , Ennan Zhai, Zhenhua Li ,Member, IEEE, Yao Liu ,

Jinlong E , Yong Cui ,Member, IEEE, and Hong Xu ,Member, IEEE

Abstract—As one type of themost popular cloud storage services, OpenStack Swift and its follow-up systems replicate each object

acrossmultiple storage nodes and leverage object sync protocols to achieve high reliability and eventual consistency. The performance

of object sync protocols heavily relies on two key parameters: r (number of replicas for each object) and n (number of objects hosted by

each storage node). In existing tutorials and demos, the configurations are usually r ¼ 3 and n < 1;000 by default, and the sync process

seems to performwell. However, we discover in data-intensive scenarios, e.g., when r > 3 and n� 1;000, the sync process is

significantly delayed and producesmassive network overhead, referred to as the sync bottleneck problem. By reviewing the source code

of OpenStack Swift, we find that its object sync protocol utilizes a fairly simple and network-intensive approach to check the consistency

among replicas of objects. Hence in a sync round, the number of exchanged hash values per node isQðn� rÞ. To tackle the problem, we

propose a lightweight and practical object sync protocol, LightSync, which not only remarkably reduces the sync overhead, but also

preserves high reliability and eventual consistency. LightSync derives this capability from three novel building blocks: 1)Hashing of

Hashes, which aggregates all the h hash values of each data partition into a single but representative hash value with theMerkle tree; 2)

Circular Hash Checking, which checks the consistency of different partition replicas by only sending the aggregated hash value to the

clockwise neighbor; and 3) Failed Neighbor Handling, which properly detects and handles node failures withmoderate overhead to

effectively strengthen the robustness of LightSync. The design of LightSync offers provable guarantee on reducing the per-node network

overhead fromQðn� rÞ toQðnhÞ. Furthermore, we have implemented LightSync as an open-source patch and adopted it to OpenStack

Swift, thus reducing the sync delay by up to 879� and the network overhead by up to 47.5�.

Index Terms—Cloud storage, OpenStack Swift, object synchronization, performance bottleneck

Ç

1 INTRODUCTION

TODAY’S cloud storage services, e.g., Amazon S3, Google
Cloud Storage, Windows Azure Storage, Aliyun OSS,

and Rackspace Cloud Files, provide highly available and
robust infrastructure support to upper-layer applications [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10]. As one type of the most
popular open-source cloud storage services, OpenStack
Swift and its follow-up systems such as Riak S2 and Apache
Cassandra (called OpenStack Swift-like systems) have been
used by many organizations and companies like Rackspace,

UnitedStack, Sina Weibo, eBay, Instagram, Reddit, and
AiMED Stat. In order to offer high data reliability and dura-
bility, OpenStack Swift-like systems typically replicate each
data object across multiple storage nodes, thus leading to
the need of maintaining consistency among the replicas.
Almost all existing OpenStack Swift-like systems employ
the eventual consistency model [11] to offer consistency guar-
antees to the hosted data objects’ replica versions. Here,
eventual consistency means that if no new update is made
to a given object, eventually all read/write accesses to
that object would return the last updated value. For Open-
Stack Swift-like systems, the eventual consistency model is
embodied by leveraging an object sync(hronization) protocol
to check different replica versions of each object.

While OpenStack Swift-like systems have been widely
used, we still hope to deep understand how well they
achieve the consistency in practice. To this end, the first part
of our work is to make a lab-scale case study based on Open-
Stack Swift. In our realistic deployment and experiments, we
observe that OpenStack Swift indeed performs well (with
just a few seconds of sync delay and a few MBs of network
overhead) for regular configuration (as proposed in most
existing tutorials and demonstrations [12], [13], [14]), i.e.,
r ¼ 3 and n < 1;000. Here r denotes the number of replicas
for each object, and n denotes the number of objects hosted
by each storage node. Nevertheless, we find that in data-
intensive scenarios, e.g., when r > 3 and n� 1;000, the
object sync process is significantly delayed and produces

� M. Ruan and Z. Li are with the School of Software, Tsinghua University,
Beijing 100084, China.
E-mail: brmk@vip.qq.com, lizhenhua1983@tsinghua.edu.cn.

� T. Titcheu is with the Interdisciplinary Centre for Security, Reliability and
Trust, University of Luxembourg, Luxembourg 4365.
E-mail: thierry_tct@yahoo.com.

� E. Zhai is with the Department of Computer Science, Yale University,
New Haven, CT 06520. E-mail: ennan.zhai@yale.edu.

� Y. Liu is with the Department of Computer Science, Binghamton University,
NY 13902. E-mail: yaoliu@binghamton.edu.

� Jinlong E and Y. Cui are with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China.
E-mail: ejl14@mails.tsinghua.edu.cn, cuiyong@tsinghua.edu.cn.

� H. Xu is with the Department of Computer Science, City University of
Hong Kong, Hong Kong. E-mail: henry.xu@cityu.edu.hk.

Manuscript received 2 July 2017; revised 15 Dec. 2017; accepted 16 Feb. 2018.
Date of publication 27 Feb. 2018; date of current version 8 Aug. 2018.
(Corresponding author: Mingkang Ruan.)
Recommended for acceptance by X. Gu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2810179

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018 2059

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4005-9931
https://orcid.org/0000-0003-4005-9931
https://orcid.org/0000-0003-4005-9931
https://orcid.org/0000-0003-4005-9931
https://orcid.org/0000-0003-4005-9931
https://orcid.org/0000-0002-5295-1831
https://orcid.org/0000-0002-5295-1831
https://orcid.org/0000-0002-5295-1831
https://orcid.org/0000-0002-5295-1831
https://orcid.org/0000-0002-5295-1831
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0003-2817-0725
https://orcid.org/0000-0003-2817-0725
https://orcid.org/0000-0003-2817-0725
https://orcid.org/0000-0003-2817-0725
https://orcid.org/0000-0003-2817-0725
https://orcid.org/0000-0002-2384-7293
https://orcid.org/0000-0002-2384-7293
https://orcid.org/0000-0002-2384-7293
https://orcid.org/0000-0002-2384-7293
https://orcid.org/0000-0002-2384-7293
https://orcid.org/0000-0001-8141-4181
https://orcid.org/0000-0001-8141-4181
https://orcid.org/0000-0001-8141-4181
https://orcid.org/0000-0001-8141-4181
https://orcid.org/0000-0001-8141-4181
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

massive network overhead.1 For example, when r ¼ 5
and n ¼ 4M, the sync delay is as long as 58 minutes and
there are 3.63 GB of network messages exchanged by every
node in a single sync round.

The exposed phenomenon is referred to as the sync bottle-
neck problem of OpenStack Swift, which also occurs in Riak
S2 and Cassandra. Moreover, the problem is considerably
aggravated in the presence of data updates (e.g., object crea-
tions and deletions) and node failures (the worst case).
In particular, when node failures occur, the failed node
needs multiple (typically 3 to 4) sync rounds to converge,
i.e., to re-enter a stable state. Furthermore, our experiments
show that this problem cannot be fundamentally addressed
by employing parallelism techniques, i.e., by increasing the
number of sync threadsNthread (detailed in Section 3.7).

Therefore, the sync bottleneck problem would easily lead
to negative influences because many of today’s data-centric
applications have to configure their back-ends with r > 3
and n� 1;000 while still desiring for quick (eventual) con-
sistency and low overhead. Such kinds of applications are
pretty common in practice: first, in a realistic object storage
system the number of objects is typically far more than
1000; second and more importantly, a larger r (exceeding 3)
is often adopted by systems that require faster access to
numerous small objects [15], a higher level of fault toler-
ance [16], or better geo-distributed availability [17].

Driven by the above observations, the second part of our
work is to investigate the source code of OpenStack Swift,
so as to thoroughly understand why the sync bottleneck
problem happens. In particular, we find that during each
sync round, the storage node for each data partition (say P)
compares its local fingerprint of P with the fingerprints of all
the other r� 1 replicas of P . This sync process introduces
network overhead of rðr� 1Þ sync messages. Specifically, as
a typical storage technique, partitioning allows the entire
object storage space to be divided into smaller pieces, where
each piece is called a (data) partition. The fingerprint of a
partition is denoted by a file which records the hash values
of all the h suffix directories included in this partition.
Therefore, each sync message contains h hash values.

More in detail, as one storage node can host multiple
(� n

h) partitions, the number of exchanged hash values by
each storage node is as large as Qðn� rÞ in a single sync
round. This brings about considerable unnecessary network
overhead. In addition, the aforementioned shortcomings
are also found in other OpenStack Swift-like systems such
as Riak S2 (the active anti-entropy component [18]) and
Cassandra (the anti-entropy node repair component [19]).

To tackle the sync bottleneck problem, we propose
a lightweight and practical sync protocol, called LightSync.
At the heart of LightSync lie three novel building blocks:

� HoH aggregates all the h hash values of each data par-
tition (in one syncmessage) into a single but represen-
tative hash value by using the Merkle tree structure.
Thus, one syncmessage contains only one hash value.

� CHC is responsible for reducing the number of sync
messages exchanged in each sync round. Specifi-
cally, CHC organizes the r replicas of a partition

with a small ring structure. During a certain
partition’s object sync process, CHC only sends the
aggregated hash value to the clockwise neighbor in
the small ring.

� FNH properly detects and handles node failures with
moderate overhead, so as to effectively strengthen
the robustness of LightSync. Also, FNH helps a failed
node quickly rejoin the system with a consistent,
latest state.

With the above design, the per-node network overhead
for OpenStack Swift object sync is provably reduced from
Qðn� rÞ to QðnhÞ hash values. Besides, the performance
degradation incurred by node failures is substantially
mitigated. To evaluate the real-world performance, we
have implemented LightSync as an open-source patch to
OpenStack Swift, which is also applicable to Riak S2 and
Cassandra in principle. The patch can be downloaded from
https://github.com/lightsync-swift/lightsync. In both lab-
scale (including 5 physical servers) and large-scale (includ-
ing 64 Aliyun ECS virtual servers) deployments, we observe
that LightSync remarkably reduces the sync delay by up to
879� and the network overhead by up to 47.5�. We also
compare LightSync with existing object sync protocols
using other topologies (e.g., Primary/Backup using Star
[20], [21] and Chain Replication using Chain [22], [23]), and
find that the sync delay of LightSync is obviously shorter
by 2–8 times.

This paper makes the following contributions:

� We (are the first to) discover the sync bottleneck
problem of OpenStack Swift-like systems through
comprehensive experiments (Section 3). In particular,
this problem is considerably aggravated in the
presence of data updates (Section 3.5) and node
failures (Section 3.6), and cannot be fundamentally
solved by increasing the number of sync threads
(Section 3.7).

� We reveal the key factors that lead to the problem by
investigating the source code of OpenStack Swift
(Section 4).

� We propose an efficient and practical object sync
protocol, named LightSync, to address the problem
(Section 5).

� We implement an open-source LightSync patch
which is suited to general OpenStack Swift-like
systems (Section 5.5).

� After the patch is applied to realistic deployments,
both lab-scale and large-scale testbed results illustrate
that LightSync is capable of significantly improving
the object sync performance. (Section 6) Also, Light-
Sync essentially outperforms its counterparts in terms
of sync delay. (Section 6.4).

2 BACKGROUND

OpenStack Swift is a well-known open-source object storage
system. It is typically used to store diverse unstructured data
objects, such as virtual machine (VM) snapshots, pictures,
audio/video volumes, and various backups. Many existing
cloud storage systems are designed and implemented by
(partially) following the paradigm of OpenStack Swift.

1. On the other hand, although both the CPU and memory usages
increase as r and n increase, they generally stay at an affordable level.

2060 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

https://github.com/lightsync-swift/lightsync

2.1 Design Goals of OpenStack Swift

OpenStack Swift offers each data object eventual consistency,
a well-studied consistency model in the area of distributed
systems. Compared with the strong consistency model, the
eventual consistency model can achieve better data avail-
ability but may lead to a situation where some clients read
an old copy of the data object [24]. Besides, OpenStack Swift
provides reliability (and durability) by replicating each
object across multiple (3 by default) storage nodes.

2.2 OpenStack Swift Architecture

As demonstrated in Fig. 1, there are two types of nodes in an
OpenStack Swift cluster: storage nodes and proxy nodes. Stor-
age nodes are responsible for storing objects while proxy
nodes—as a bridge between clients and storage nodes—
communicate with clients and allocate requested objects on
storage nodes. On receiving a client’s read request on an
object o, the proxy node first searches for the storage nodes
hosting the replicas of o and then sends requests to all the
replica nodes of the object o. We use r to denote the number
of replicas for each object throughout the paper. By default,
OpenStack Swift utilizes a quorum-based voting mechanism
for replica control [25]. Once a valid number of (� br=2c þ 1)
responses are received, the proxy node selects the best
response (i.e., the one with the latest version of o) and then
redirects the response to the client. On the other side, for a
given write request on o, the proxy node sends the request
to all the r storage nodes hosting o. As long as a certain num-
ber (� br=2c þ 1) of them reply with “successful write,” the
update is taken as successful.

2.3 Partition and Synchronization

Like many popular storage systems, OpenStack Swift
organizes data partitions through consistent hashing
(or says DHT, distributed hash table) [26], [27]. Specifically,
OpenStack Swift constructs a logical ring (called the object
ring or partition ring) to represent the entire storage space.
This logical ring is composed of many equivalent subspaces.
Each subspace represents a partition and includes a number
of (h)2 objects belonging to the partition. According to
the working principle of consistent hashing, h dynamically
changes with the system scale.

Each partition is replicated r times on the logical ring,
physically mapped to r different storage nodes. If all the N
storage nodes in the logical ring are homogeneous, the num-
ber of partitions hosted by each node is r�p

N , where p denotes
the total number of unique partitions.

Each object is assigned a unique identifier, i.e., an MD5
hash value of the object’s path. Further, objects in the same
partition are split into multiple subdirectories (suffix directo-
ries) according to the suffixes of their hash values. For
Example in Fig. 2, one suffix in the directory 25 is 882, so
the last three characters of all the hash values located in this
suffix directory are exactly 882.

For a given partition, its fingerprint is denoted by the
hashes.pkl file. Each line of the hashes.pkl file contains at least
35 hex characters: 3 for the hash suffix and 32 for the MD5
hash value. The corresponding sync message of a partition
mainly contains its hashes.pkl file.

3 CASE STUDY

To deep understand how well OpenStack Swift-like systems
achieve consistency, this section presents a lab-scale case
study on the object sync performance of OpenStack Swift. We
first conduct experiments to understand OpenStack Swift’s
sync delay (Section 3.2), network overhead (Section 3.3),
and CPU&memory usages (Section 3.4) in a stable state. Here
a stable state means very few to no data updates (e.g., object
creations or deletions) occur to the OpenStack Swift system.
Then, on the contrary, we examine the sync delay and net-
work overhead of OpenStack Swift in the presence of bursty
data updates (Section 3.5) and node failures (Section 3.6).
We finally summarize our OpenStack Swift case study in
Section 3.8.

3.1 Experimental Setup

Wemake a lab-scale OpenStack Swift deployment for the case
study. The deployment involves five Dell PowerEdge T620
servers, each equipped with 2 � 8-core Intel Xeon CPUs@2.0
GHz, 32 - GB 1600 - MHz DDR3 memory, 8 � 600-GB 15
K-RPMSAS disk storage, and two 1-Gbps BroadcomEthernet
interfaces. The operating system of each server is Ubuntu
14.04 LTS 64-bit. All these servers, aswell as the client devices,
are connected by a commodity TP-LINK switch with 1-Gbps
wired transmission rate.

One of these servers (Node-0) is used to run the Open-
stack Keystone service for account/data authentication,
and meanwhile plays the roles as both a proxy node and a
storage node in the OpenStack Swift system. The other
servers (Node-1, Node-2, Node-3, and Node-4) are only used

Fig. 1. OpenStack Swift architecture.

Fig. 2. An example for a data partition’s structure.

2. Mostly each suffix directory contains only one object, i.e., we may
assume h � the number of objects in a partition.

RUAN ET AL.: ON THE SYNCHRONIZATION BOTTLENECK OF OPENSTACK SWIFT-LIKE CLOUD STORAGE SYSTEMS 2061

as storage nodes. In this lab-scale OpenStack Swift system,
the max number of partitions is fixed to 218 ¼ 262144 (as rec-
ommended in the official OpenStack installation guide [14]),
and the number of replicas for each data object is configured
as r ¼ 2; 3; 4; 5, respectively.

In addition, we employ multiple common laptops as the
client devices. They are responsible for sending both object
read and write requests through ssbench (SwiftStack
Benchmark Suite [28]), a benchmarking tool for automati-
cally generating intensive OpenStack Swift workloads.
Each data object is filled with random bytes between 6 KB
and 10 KB (we will prove in Section 4 that the object sync
performance of OpenStack Swift is generally irrelevant to
the concrete content and size of each data object).

3.2 Sync Delay in a Stable State

First of all, we want to understand the impact of the two key
parameters, i.e., r and n, on the running time of a sync
round (called the sync delay). To this end, we conduct mul-
tiple experiments with increasing n ¼ 1K; 10K; 100K; 1M;
2M; 3M; 4M and r ¼ 2; 3; 4; 5, respectively, and measure the
sync delay when the system enters a stable state. In an
OpenStack Swift system, the sync delay is recorded in its
log file, i.e., /var/log/syslog.

As shown in Fig. 3, when n � 1K, the sync delay is
merely a few seconds. However, when n reaches several
million, it sharply increases to tens of minutes. Meanwhile,
the sync delay increases with a larger r. The above phenom-
ena are not acceptable in practical data-intensive scenarios,
since they may well influence the desired availability and
consistency of OpenStack Swift. An interesting finding is
when n > 1M, the sync delay increases quite slowly (for a
fixed r). This can be explained by the number of partitions
(p) illustrated in Fig. 7. As mentioned in Section 3.1, the
max number of partitions is fixed to 218 ¼ 262144. When
n grows, p is automatically increased by OpenStack Swift.
But when n > 1M � 262144, p stays close to (but no
more than) 262144. Hence, the number of sync messages

exchanged per node (heavily depending on the value of p)
keeps stable while the size of each sync message is enlarged,
which will be thoroughly explained in Section 4.

3.3 Network Overhead in a Stable State

Next, we aim at understanding the network overhead in a
sync round, which might be an essential factor that deter-
mines the sync delay. For this purpose, we measure the size
of network messages exchanged within the OpenStack Swift
system during the object sync process in a stable state.
The measurement results in Fig. 4 show that the network
overhead increases with larger n and/or r. More importantly,
the four curves in Fig. 4 are basically consistent with those in
Fig. 3 in terms of variation trend. For example, when n ¼ 4M
and r ¼ 5, the sync delay reaches the maximum 58 minutes,
and meanwhile the network overhead reaches the maximum
3.63 GB. When n > 1M � 262144 (for a fixed r), although
the number of sync messages keeps stable, the size of each
sync message still grows with n since each sync message con-
tains more hash values (of more data objects). This is why the
network overhead continues growingwith nwhen n > 1M.

3.4 CPU and Memory Usages in a Stable State

In addition to sync delay and network overhead, we wish to
know the computation overhead of the object sync process.
We, therefore, measure the CPU and memory usages of
OpenStack Swift in a sync round. The CPU usage per storage
server is plotted in Fig. 5 and the memory usage per storage
server is plotted in Fig. 6. As shown in these two figures, we
have the following two findings. First, both the CPU and
memory usages increase as the number of objects (n) and/or
the number of replicas for each object (r) increase. Second,
even for the largest deployment (where n ¼ 4M and r ¼ 5),
the CPU usage is close to 30 percent and the memory usage
is close to 160 MB. Since each storage server has 32 GB
of memory, the highest memory usage rate is merely
0.5 percent (¼ 160 MB

32 GB). Thus, both the CPU and memory
usages are affordable for the OpenStack Swift system.

Fig. 3. Sync delay in a stable state.

Fig. 4. Network overhead in a stable state.

Fig. 5. CPU usage in a stable state.

Fig. 6. Memory usage in a stable state.

2062 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

3.5 Sync Performance in the Presence
of Data Updates

We now examine the sync delay and network overhead of
OpenStack Swift in the presence of data updates. Specifi-
cally, we generate two types of data updates. First, we cre-
ate a certain portion (10 percent) of data objects relative to
the existing n objects, and then record the sync performance
right after the new objects are successfully created. Second,
we delete a certain portion (10 percent) of objects, and then
record the sync performance right after the 10 percent
objects are successfully deleted. The sync delay correspond-
ing to the two types of data updates is shown in Figs. 8 and
10, respectively. The two figures consistently illustrate that
the sync delay is increased when data updates happen to
the system. Compared with the stable state, object creations
and deletions lead to around 34.4 and 40.2 percent addition
to the sync delay, respectively. This is because OpenStack
Swift needs to recalculate the hash values of the modified
data partitions, which takes extra time.3 Differently, we
observe that the network overhead in the presence of data
updates is comparable to that in a stable state, indicated by
the measure results in Figs. 9 and 11.

3.6 Sync Performance in the Presence
of a Node Fault

In addition to data updates, we study the performance deg-
radation caused by a node failure in OpenStack Swift. We
conduct the study in the following two steps. First, we
remove a storage node from the system by disconnecting it
with the switch, and then record the sync performance of
the remaining live nodes. Next, we modify a certain portion
(10 percent) of data objects in the system, and then add the
failed node into the system. At the same time, we record the
sync performance of the live nodes during the failed node’s
rejoining process. Here modify means that we first delete a
certain portion of objects and then create the same number
of new objects using the previous object paths.

The sync delay in the presence of a node failure is pre-
sented in Fig. 12. When r � 2 and n� 10;000, the sync
delay is extremely long (e.g., 220 hours when r ¼ 5 and
n ¼ 4M). The corresponding network overhead is shown in
Fig. 13, which is however less than that in a stable state
because many messages cannot be sent to or received from
the failed node. Next, the sync delay and network overhead
corresponding to the failed node’s rejoining process are
shown in Figs. 14 and 15, respectively. Compared with the
case in a stable state, the rejoining process incurs about 297
and 32.5 percent addition to the sync delay and network
overhead, respectively. In addition, we observe that the

Fig. 7. Number of partitions (p).

Fig. 8. Sync delay right after 10 percent object creations.

Fig. 9. Network overhead right after 10 percent object creations.

Fig. 10. Sync delay right after 10 percent object deletions.

Fig. 11. Network overhead right after 10 percent object deletions.

Fig. 12. Sync delay in the presence of a node failure.

3. Caching such hash values in memory using systems such as
Memcached or Mbal [29], however, would considerably increase the
system complexity, and thus cannot fundamentally address the issue.

RUAN ET AL.: ON THE SYNCHRONIZATION BOTTLENECK OF OPENSTACK SWIFT-LIKE CLOUD STORAGE SYSTEMS 2063

failed node itself needs multiple (typically 3 to 4) sync
rounds to converge (i.e., to re-enter a stable state), as shown
in Fig. 16. When the failed node rejoins the system, the sync
processes of the other live nodes are at different levels of
completion, therefore some partitions on the failed node
have to be updated (by the live nodes) in the subsequent
sync rounds. In general, a node failure leads to the worst
case in the sync performance of OpenStack Swift.

3.7 Using Multiple Sync Threads

OpenStack Swift provides an optimization option to acceler-
ate the object sync process by increasing the number of
sync threads (Nthread) (i.e., the so-called “parallelism”).
By default, Nthread ¼ 1, which is the configuration adopted
in Sections 3.2 and 3.3. To understand the influence ofNthread

on the sync delay, we make every storage node host n ¼ 4M
objects with r ¼ 5 replicas, and run experiments with differ-
ent Nthread. As demonstrated in Fig. 17, the sync delay in a
stable state can be considerably reduced from 58 minutes
to 21 minutes when Nthread increases from 1 to 8, but cannot
be further reduced when Nthread > 8. Differently, Nthread

does not impact the network overhead of the sync process.
Even worse, increasing parallelism contributes little to

the reduction of sync delay, especially in scenarios when
hash values have to be recalculated and rewritten on disk
(e.g., in the presence of data updates or during a rejoining

process). This is because the object sync process is an
I/O-bound process. The disk bandwidth has become the
major performance bottleneck when Nthread reaches a cer-
tain level (e.g., Nthread > 2 during a rejoining process).
Simply increasing the level of parallelism may even aggra-
vate the problem (by investing more CPU resources).

On the other hand, as Nthread increases, the average CPU
utilization (in unit of CPU core) also increases. For instance,
the average CPU utilization of a storage node reaches 100
(200 percent) if we use 4 (16) sync threads. In conclusion,
parallelism could partially reduce the sync delay (since
the sync delay can hardly be reduced when Nthread > 8)
but at the cost of higher computation overhead. Further, we
observe the similar phenomenon in the presence of data
updates and node failures.

3.8 Summary: The Sync Bottleneck Problem

Based on all the revealed results in this section, we discover
an important phenomenon: the object sync performance can
be badly influenced once the data intensity of OpenStack
Swift becomes higher than a certain level, e.g., r > 3 and
n� 1;000. This phenomenon is referred to as the sync bot-
tleneck problem of OpenStack Swift, which also occurs in
the follow-up systems like Riak S2 and Cassandra, where
similar benchmark experiments illustrate similar situa-
tions. In particular, our experimental results demonstrate
the following four features of OpenStack Swift. First,
common configurations, e.g., r ¼ 3 and n < 1;000, make
OpenStack Swift work well. Second, data-intensive
configurations, e.g., r > 3 and n� 1;000, would lead to
the sync bottleneck problem. Third, the sync bottleneck
problem is considerably aggravated in the presence of
data updates and node failures (the worst case). Finally,
the optimization mechanism by increasing Nthread cannot
fundamentally solve the sync bottleneck problem in prac-
tice. Thus, we will only use the default Nthread ¼ 1 in the
remainder of the paper.

Fig. 13. Network overhead in the presence of a node failure.

Fig. 14. Sync delay during a failed node’s rejoining process.

Fig. 15. Network overhead during a failed node’s rejoining process.

Fig. 16. Sync delay of a failed node in different sync rounds right after
it rejoins the system.

Fig. 17. Sync delay and CPU utilization in a stable state, in the presence
of data updates, and during a node’s rejoining process when r ¼ 5
and n ¼ 4M.

2064 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

4 ROOT CAUSE ANALYSIS

To explore the root cause of the sync bottleneck problem, we
investigate the source code of OpenStack Swift. This section
presents our investigation results about: 1) how the object
sync process works in OpenStack Swift; and 2) how expen-
sive the current object sync protocol is.

4.1 Object Sync Process in OpenStack Swift

The relevant source code of OpenStack Swift (the Icehouse
version4) is mainly included in the files listed in Table 1.
Through the source code review, we find that OpenStack
Swift is currently using a fairly simple and network-
intensive approach to check the consistency among replicas
of a data partition, where a partition consists of h objects.
Fig. 18 depicts an example for a complete OpenStack Swift
object (partition) sync process with r ¼ 5. For a given parti-
tion P , in each sub-process, all the nodes hosting the r repli-
cas will randomly elect one node as the leader, but different
sub-processes must generate different leaders. The leader
sends one sync message to each of the other r� 1 nodes
to check the statuses of P on them. When all the r sub-
processes finish, we say an object sync process (i.e., a sync
round) of the partition P is completed.

In addition, by examining the relevant source code, we
find the above approach is also adopted by other OpenStack
Swift-like systems, such as Riak S2 (the active anti-entropy
component [18]) and Cassandra (the anti-entropy node
repair component [19]).

4.2 Network Overhead Analysis

While we have observed the sync bottleneck problem from
our case study (Section 3), we hope to quantitatively under-
stand how expensive the current object sync protocol of
OpenStack Swift is in principle/theory. As Section 3 has
clearly illustrated that it is the enormous network overhead
that leads to the sync bottleneck problem,we focus on analyz-
ing the network overhead. It is straightforward to deduce
from Fig. 18 that for a given partition P , the total number of
syncmessages exchangedduring an entire object sync process
is 2C2

r ¼ rðr� 1Þ, assuming nomessage loss. Besides, the size

of each sync message depends on the size of the hashes.pkl file
(see Fig. 2), which contains h hash values. Furthermore,
as one storage node can host multiple (nh) partitions, the num-
ber of exchanged hash values by each node is around
n
h� rðr�1Þ�h

r ¼ nðr� 1Þ in a sync round. Finally, taking the
other involved network overhead (e.g., HTTP/TCP/IP packet
headers for delivering the hash values) into account, we
conclude that the per-node per-round network overhead of
OpenStack Swift is in Qðn� rÞ. Apart from the hash values,
OpenStack Swift needs to push the content of corresponding
objects to remote nodes if there is any inconsistency.

5 LIGHTSYNC: DESIGN AND IMPLEMENTATION

Guided by the thorough understanding of the object sync
process of OpenStack Swift, we design a lightweight and
practical object sync protocol, called LightSync, to tackle the
sync bottleneck problem. LightSync not only significantly
reduces the sync overhead, but also is applicable to general
OpenStack Swift-like systems.

5.1 LightSync Overview

LightSync is designed to replace the original object sync
protocols in current OpenStack Swift-like systems. Besides
reducing the sync overhead, it can also ensure high reliabil-
ity and eventual consistency. LightSync derives the desired
properties from the following three novel building blocks.

First, LightSync employs the Hashing of Hashes (HoH)
mechanism (Section 5.2) to reduce the size of each sync mes-
sage. The basic idea of HoH is to aggregate all the h hash
values in each partition into a single but representative hash
value by using the Merkle tree data structure. HoH replaces
the original approach to generating the fingerprint file hashes.
pkl by generating amuch smaller fingerprint file changed.pkl.

Second, LightSync leverages the Circular Hash Checking
(CHC)mechanism (Section 5.3) to reduce the number of sync
messages exchanged in each sync round. CHC organizes all
the replicas of a partition with a ring structure. During a cer-
tain partition’s object sync process, CHC only sends the
aggregated hash value (by HoH) to the clockwise neighbor
in the ring (instead of the original all-to-all manner).

Third, LightSync utilizes the Failed Neighbor Handling
(FNH) mechanism (Section 5.4) to properly detect and
handle node failures with moderate overhead, so as to effec-
tively strengthen the robustness of LightSync.

Finally, Section 5.5 describes how we implement Light-
Sync as an open-source patch to OpenStack Swift.

5.2 Hashing of Hashes (HoH)

Preliminary: Merkle Tree. AMerkle tree [30] is a tree structure
for organizing and representing the hash values of multiple
data objects. The leaves of the tree are the hash values of
data objects. Nodes further up in the tree are the hash values
of their respective children. For example, in Fig. 19, Hash 0
is the hash value of concatenating Hash 0-0 and Hash 0-1,
i.e., Hash 0 = Hash(Hash 0-0 + Hash 0-1), where “þ” means
concatenation. In practice, Merkle tree is mainly used to
reduce the amount of data transferred during data check-
ing. Suppose two storage nodes A and B use a Merkle tree
to check the data stored by each other. First, A sends
the root-layer hash value of its Merkle tree to B. Then, B

TABLE 1
Source Code of OpenStack Swift Relevant

to its Object Sync Process

Path File

python2.7/dist-packages/swift/obj

diskfile.py
mem_diskfile.py
replicator.py
server.py

python2.7/dist-packages/swift/proxy server.py

python2.7/dist-packages/swift/proxy/controller
base.py
obj.py

python2.7/dist-packages/swift/common
bufferedhttp.py

http.py

python2.7/dist-packages/swift/common/ring 	.py

4. We have also examined the latest Liberty version of OpenStack
Swift and find that the concerned source code is generally unchanged.

RUAN ET AL.: ON THE SYNCHRONIZATION BOTTLENECK OF OPENSTACK SWIFT-LIKE CLOUD STORAGE SYSTEMS 2065

compares the received hash value with the root-layer hash
value of its local Merkle tree. If the two values match, the
checking process terminates; otherwise, A should send the
lower-layer hash values in its Merkle tree to B for further
checking. However, finding inconsistent data objects in the
above-mentioned way needs multiple rounds of data trans-
mission. The cost of long round-trip time (RTT) outweighs
the benefits of reduced network traffic. Therefore, LightSync
discards the intermediate hash values but stores only the
root-layer hash values and the leaves of the Merkle tree.
Once the root-layer hash values do not match each other,
LightSync will directly compare the hash values in the
leaves of the Merkle tree.

Generation of the Aggregated Hash Value. We now describe
how HoH generates the aggregated hash value that repre-
sents a given partition P . First, HoH extracts the hashes.pkl
file of P (i.e., the fingerprint of P). Then, HoH computes the
MD5 hash values of all the suffix hashes in P one by one (as
demonstrated in Fig. 20). This process constructs the Merkle
tree structure. Finally, HoH stores the aggregated MD5
hash value, i.e., the root-layer hash value of the Merkle tree,
in a file named changed.pkl (also stored in the partition’s
directory). So far, when a storage node wants to send a sync
message (for a partition P) to another storage node, it only
needs to “envelop” a single hash value, i.e., the aggregated
hash value in changed.pkl, into each sync message.

Consistency Checking. If an aggregated hash value of a
data partition is found inconsistent between two storage
nodes, the local node should first determine which suffix
directory is inconsistent and then which version of that cor-
responding suffix directory is more up-to-date.

First, the inconsistent suffix directory is sought out by
comparing the s leaf-layer hash values received with the
local ones within OðsÞ steps, where s is the number of suffix
directories in the corresponding data partition. Once the
inconsistent suffix directory is found, the local node actively
pushes the corresponding data chunks to the remote node,
which will later determine which version is newer by check-
ing timestamps recorded as file names of data chunks.
Finally, the stale data chunks will be deleted.

Compared with the original design of OpenStack Swift,
HoH uses a single but representative hash value to replace
a large collection of hash values, thus effectively reducing
the size of each sync message by nearly h times.

5.3 Circular Hash Checking (CHC)

CHC is responsible for enabling different replicas of the
same partition to achieve consistency more efficiently. Spe-
cifically, during a circular hash checking process, the stor-
age nodes hosting the r replicas of a given partition P form
a small logical ring, called the replica ring of P . This small
replica ring is easy to form as it already exists inside the
large object ring (refer to Section 2.3).

Suppose P has 5 replicas, and ri denotes the storage
node hosting the ith replica for P . When a storage node
wants to check the consistency of P with the other replica
nodes, it only sends a sync message (generated by HoH)
to the successor node clockwise on the replica ring of
P—this successor replica node is referred to as its clockwise
neighbor. For example in Fig. 21, when r3 wants to check
the consistency of P , it only sends a sync message to r4
rather than r1, r2, r4 and r5 (as in Fig. 18). After each rep-
lica node finishes sending a sync message to its clockwise
neighbor, we say a CHC process (or a CHC sync round) is
completed. Formally, Algorithm 1 describes how CHC
works.

Algorithm 1. Circular Hash Checking

Input: A set RP containing all the replica nodes’ IDs for a
given data partition P ;

while RP 6¼ ; do
Randomly pick out a replica node’s ID from RP ;
rP the picked replica node’s ID;
Remove rP from RP ;
The replica node (with ID =) rP sends a sync message to
rP ’s clockwise neighbor;
if rP ’s version of P is different from the version held by its
clockwise neighbor then

rP pushes its hosted data of P at local version to its
clockwise neighbor;

Fig. 18. An example for a complete object sync process. The five sub-processes run in parallel rather than in sequence.

Fig. 19. An example for the Merkle tree. Fig. 20. Hashing of hashes for a data partition.

2066 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

5.4 Failed Neighbor Handling (FNH)

As illustrated in Section 3.6, node failures significantly
degrade the sync performance of OpenStack Swift. For
LightSync, this problem remains since neither HoH nor
CHC could ever alleviate it (sometimes they can even aggra-
vate the problem). We therefore propose a mechanism
called Failed Neighbor Handling (abbreviated as FNH) to
effectively address the problem with moderate overhead.
Specifically, our solution consists of three successive proce-
dures: failure detection (Section 5.4.1), failure handling
(Section 5.4.2) and failed node’s rejoining (Section 5.4.3).
We detail each of them as follows.

5.4.1 Failure Detection

In a distributed storage system like OpenStack Swift, the
failure of any node is a complicated phenomenon which
can hardly be accurately determined. On one hand, when a
node fails to send heartbeat messages in a heartbeat period
(referred to as an exception), we cannot simply determine
whether this node fails, because this exception might be
owing to a temporary network problem. In other words, we
should not determine a node’s failure in an aggressive man-
ner; otherwise, the overhead of failure handling would be
enormous and mostly unnecessary.

On the other hand, when a node has lost contact with its
neighbor(s) in a number of heartbeat periods, we have to
look these consecutive exceptions as a node failure and then
take efforts to handle the failure, rather than waiting for the
potential recovery to this node for infinite time. In other
words, we should not determine a node’s failure in a con-
servative manner; otherwise, the working efficiency of the
system would be substantially impaired.

Guided by the above insights, we devise a practical fail-
ure detection procedure to reasonably determine a node’s
failure. First, we use a failure table for each storage node to
record the statistics of the other storage nodes’ exceptions,
as exemplified in Table 2. Each row of the failure table corre-
sponds to one of the other storage nodes and contains two
variables: nexception (i.e., the number of exceptions that have
occurred to that node) and texception (i.e., the happening time
of the last exception). When nexception reaches a threshold
error suppression limit (ESL), the corresponding node
is considered failed. Then, the current node would stop
syncing with the failed node for a specific period of time

error suppression interval (ESI). In our implementation,
ESL ¼ 10 and ESI ¼ 60 seconds; both configurations are
derived from OpenStack Swift statistics [31]. After the ESI,
nexception will be reset to 0. The whole procedure is demon-
strated in Fig. 22.

5.4.2 Failure Handling

The failure of a node would impair the clockwise propaga-
tion of latest data and state information along the replica
ring (constructed by CHC, refer to Section 5.3). In other
words, a failed node would make CHC inefficient or even
ineffective, which would further undermine the whole
object sync process of LightSync. To this end, once a failed
node is detected, we leverage a simple yet practical mecha-
nism to handle the failure, which actively eliminates a failed
node from the current replica ring and reorganizes the
healthy nodes into a new replica ring. For example in
Fig. 23, when a healthy node r2 determines that its clock-
wise neighbor r3 has failed, it needs to skip r3 and connects
to r3’s clockwise neighbor r4 using its failure table. Like-
wise, if r4 has also failed, r2 will skip both r3 and r4 and
then connect to r5. When the new replica ring is successfully
formed, r2 needs to send a notification message to all the
other healthy nodes (in the new replica ring) so that they
can update their failure tables into a consistent state.

5.4.3 Failed Nodes’ Rejoining

In practice, a failed node can be recovered in a certain
period of time, and then rejoin the system by merging into
its originally residential replica ring. A strawman solution
for a failed node’s rejoining process is: when an existing
node in the replica ring detects the recovery of the failed
node (now becoming a rejoining node), it will introduce the
rejoining node to all the other existing nodes. This process
can work in a reverse manner compared to failure handling.
Nevertheless, if there are data updates happening after the

Fig. 21. An example for a complete LightSync process. The five sub-processes run in parallel rather than in sequence.

TABLE 2
An Example of the Failure Table Maintained by r2

Node ID nexception texception

r1 0 –
r3 10 5/5/2017 1:12:30 PM
r4 9 5/5/2017 1:12:29 PM
r5 0 5/5/2017 1:11:00 PM

Fig. 22. An exemplified procedure of our failure detection mechanism.

Fig. 23. An example of how FNH works.

RUAN ET AL.: ON THE SYNCHRONIZATION BOTTLENECK OF OPENSTACK SWIFT-LIKE CLOUD STORAGE SYSTEMS 2067

failed node (temporarily) leaves the system and before the
failed node rejoins the system, the original rejoining mecha-
nism implemented by OpenStack Swift would incur con-
siderably longer delay and larger traffic overhead than
necessary. Specifically, once data inconsistency is detected,
the original rejoining mechanism lets each node push its
hosted data objects at their locally latest versions (which
might not be the globally latest ones) to the other node(s) in
the replica ring. Obviously, the network traffic caused by
the failed node’s pushing its obsolete data to the other node
(s) is unnecessary and introduces more delay.

In order to figure out how to reduce such a kind of unnec-
essary data pushes, we first revisit the sync process of Open-
Stack Swift. At first, a storage node adds its hosted data
partitions to a sync queue in a random order. During a sync
round, the current node extracts partitions from the queue
serially, generates their corresponding replica rings (one for
each partition, as described in Section 5.3), checks their con-
sistency with respective clockwise neighbors and initiates
data pushes if inconsistency is detected. The same process is
run by other storage nodes concurrently and independently,
so that some obsolete partitions in the local sync queue will
be updated by other storage nodes (i.e., inconsistency is elim-
inated) before the current node checks their consistency.

Guided by the above insights, we optimize the original
rejoining mechanism of OpenStack Swift by dynamically
adjusting the order of partitions in the sync queue of a
healthy node. First, FNH synchronizes those partitions
whose replica rings use the rejoining nodes as the current
node’s clockwise neighbors. In this way, their correspond-
ing replicas on the rejoining nodes (which are likely to be
obsolete) can be updated earlier. For example in Fig. 24, the
current healthy node r2 maintains a sync queue of its hosted
data partitions and r3 is a rejoining node. Then, FNHmoves
partitions whose replica rings use r3 as r2’s clockwise neigh-
bor to the head of the sync queue. Hence, the corresponding
replicas of the same partitions (i.e., Partition 1 and 3) on r3
are likely to be updated before r3 checks their consistency.
The same process will be done in parallel by other healthy
nodes (i.e., r1, r4, r5), which provides even faster recovery
of r3 with lower network overhead.

5.5 Implementation

We implement LightSync for OpenStack Swift (the Icehouse
version) in Python, without introducing any additional
library. Specifically, we develop HoH + CHC + FNH by
adding, deleting, ormodifying over 500 lines of Python codes.
We have published LightSync as an open-source patch to ben-
efit the community via the following link: https://github.com/
lightsync-swift/lightsync.

6 EVALUATION

In this section, we first analyze the theoretical network over-
head of LightSync in Section 6.1. Then, to evaluate the real-
world performance of LightSync, we conduct both lab-scale
and large-scale experiments on top of OpenStack Swift
equipped with LightSync. The lab-scale and large-scale
experiment results are presented in Sections 6.2 and 6.3,
respectively. The goal of our evaluation is to explore how
well LightSync improves the object sync process of Open-
Stack Swift-like systems, mainly in terms of sync delay and
network overhead. Some other performance metrics, includ-
ing CPU usage, memory usage are also examined during
our evaluations.

6.1 Theoretical Analysis

Network Overhead. By comparing Figs. 18 and 21, we dis-
cover that for a given partition P , the total number of sync
messages exchanged during a sync round is reduced from
2C2

r ¼ rðr� 1Þ to r by CHC. Further, with respect to each
sync message, the number of its delivered hash values is
reduced from h to 1 by HoH. As one storage node can host n

h

partitions, the number of exchanged hash values by each
node is around n

h� r
r� 1 ¼ n

h with LightSync. It is worth
mentioning that h dynamically changes with the system
scale and we have n

h ¼ r�p
N , as described in Section 2.3.

Finally, taking the other involved network overhead into
account, we conclude that LightSync significantly reduces
the per-node per-round network overhead of OpenStack
Swift from Qðn� rÞ to QðnhÞ.

Eventual Consistency Guarantee. At each sync round, repli-
cas are updated by its anti-clockwise neighbor (refer to
Section 5.2). Let Vi

t denote the replica’s timestamp of node

i at sync round t, then we have: Vi
tþ1 ¼ maxðVði�1Þ%r

t ;Vi
tÞ.

Applying this chain rule for multiple times, we have Vi
tþ4 ¼

maxðVði�4Þ%r
t ;V

ði�3Þ%r
t ;V

ði�2Þ%r
t ;V

ði�1Þ%r
t ;Vi

tÞ Suppose there
are five replicas configured. In the worst case, if the updated
version of data exists on only one of the five replica nodes,
the other four nodes can obtain the newest version in no
more than 1, 2, 3, 4 rounds, respectively. However, in our
case where the quorum-based replica control mechanism is
enabled, a successful write requires that more than half of
replica nodes should have the updated version, i.e., 3 if
there are five replicas. On this condition, in no more than 2
rounds (mostly 1 round is enough), all replica nodes will
have the updated version. Further experiments in Section
6.2 show that LightSync converges quickly.

6.2 Lab-scale Experiments

To comprehensively understand the performance of Light-
Sync, we still conduct experiments on our lab-scale Open-
Stack Swift deployment (refer to Section 3.1 for details).

Sync Delay and Network Overhead in a Stable State. As in
Fig. 25, LightSync remarkably decreases the sync delay
of OpenStack Swift—the four curves of LightSync are
almost always below their counterparts of Original. Here
“Original” denotes the original object sync protocol. More
importantly, it is validated that the sync delaywith LightSync
is positively related to the number of partitions hosted by
each storage node (i.e., r�p

N). Owing to the notable power of
CHC and HoH in avoiding unnecessary sync messages, the

Fig. 24. An example for the sync queue maintained by r2.

2068 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

sync delay keeps stable (for a fixed r and N) when n � 1M
and p reaches itsmaximum 262144. LightSync also effectively
decreases the network overhead of OpenStack Swift, as
shown in Fig. 26. Note that the four curves of LightSync are
below their counterparts of Original, and the network over-
head with LightSync is basically consistent with the sync
delay in Fig. 25 in terms of variation trend. Quantitatively,
LightSync reduces the sync delay by 1:0
 4:09 (2.23 on aver-
age) times, and the network overhead by 1:0
 7:26 (3.50 on
average) times. In particular, with regard to the largest con-
figuration (i.e., r ¼ 5 and n ¼ 4M), the sync delay is reduced
from 58 to 14.18 minutes, and the network overhead is
reduced from 3630 to 500MB.

CPU and Memory usages in a Stable State. The CPU and
memory usages of LightSync (per storage server) in a stable
state are shown in Figs. 27 and28. By comparing Fig. 27
with Fig. 5 and comparing Fig. 28 with Fig. 6, we observe
that the computation overhead of LightSync is comparable
to that of the original object sync protocol of OpenStack
Swift. Namely, although LightSync can significantly reduce
the sync delay and network overhead, it does not save on
computation resources.

Sync Delay and Network Overhead in the Presence of Data
Updates. Sync delay of LightSync right after 10 percent object
creations and deletions is presented in Figs. 29 and 31,
respectively. By comparing the two figures with Figs. 8 and
10, we observe that LightSync greatly reduces the sync delay
of OpenStack Swift. For example, when r ¼ 5 and n ¼ 4M,
LightSync reduces the sync delay right after 10 percent object
creations and deletions by around 27 and 35 percent, respec-
tively. Accordingly, the network overhead of LightSync right
after 10 percent object creations and deletions is shown in
Figs. 30 and 32, respectively. By comparing the two figures
with Figs. 9 and 11, we find that LightSync significantly
reduces the network overhead of OpenStack Swift. For
example, when r ¼ 5 and n ¼ 4M, LightSync reduces the

Fig. 25. Sync delay of LightSync in a stable state in lab-scale experiments.
The sync delay with the original design is also plotted for comparison.

Fig. 26. Network overhead of LightSync in a stable state in lab-scale
experiments. The network overhead with the original design is also
plotted for comparison.

Fig. 27. CPU usage of LightSync in a stable state.

Fig. 28. Memory usage of LightSync in a stable state.

Fig. 29. Sync delay right after 10 percent object creations.

Fig. 30. Network overhead after 10 percent object creations.

Fig. 31. Sync delay right after 10 percent object deletions.

RUAN ET AL.: ON THE SYNCHRONIZATION BOTTLENECK OF OPENSTACK SWIFT-LIKE CLOUD STORAGE SYSTEMS 2069

network overhead right after 10 percent object creations
and deletions by around 86 and 86.2 percent, respectively.

Sync Delay and Network Overhead in the Presence of a Node
Failure. When one of the five storage nodes fails in the
system, both the sync delay and network overhead of Light-
Sync are comparable to those in a stable state, as indicated
in Figs. 33 and 34. They consistently illustrate the robustness
of LightSync in the presence of a node failure. On the con-
trary, the original object sync protocol of OpenStack Swift
does not function well in this situation (e.g., its sync delay
reaches 220 hours when r ¼ 5 and n ¼ 4M). When the failed
node is recovered and then rejoins the system, the sync delay
and network overhead introduced by the rejoining process
are shown in Figs. 35 and 36, respectively. By comparing the
two figures with Figs. 14 and 15, we find that the sync delay
of LightSync is slightly shorter than that of Original while
the network overhead is substantially reduced. For example,
when r ¼ 5 and n ¼ 4M, the sync delay of LightSync during
a failed node’s rejoining process is 205.89 minutes while that
of Original is 230.31 minutes. However, the network over-
head is greatly reduced from 4811MB to 1614MB.

Convergence Time of a Failed Node.We record sync delay of
a failed node in several sync rounds right after it rejoins the
system and find that LightSync also needs multiple sync
rounds to converge. However, each sync round takes less
time than that of Original and therefore a failed node can

get back to work sooner. For example in Fig. 37, the sync
delay of the second and third sync rounds is very close to
that in a stable state.

Accuracy of CHC. We define the accuracy of CHC as the
percentage of suffix directories in a storage node that are
consistent with the updates. we conduct experiments under
conditions where no more than half of the replica nodes fail.
As shown in Fig. 38, LightSync converges in no more than
two sync rounds (mostly a single sync round is enough).

6.3 VM-Based Large-Scale Experiments

To construct a large-scale experimental environment for the
performance evaluation of LightSync (as well as the original
design of OpenStack Swift), we launch 64 VMs on top of the

Fig. 32. Network overhead right after 10 percent object deletions.

Fig. 33. Sync delay in the presence of a node failure.

Fig. 34. Network overhead in the presence of a node failure.

Fig. 35. Sync delay during a failed node’s rejoining process.

Fig. 36. Network overhead in a failed node’s rejoining process.

Fig. 37. Sync delay in different sync rounds during the rejoining process.

Fig. 38. Accuracy of CHC in different sync rounds during the rejoining
process.

2070 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

Aliyun.com ECS (Elastic Compute Service) platform. Each
VM is equipped with a 2-core Intel Xeon CPU@2.3 GHz,
4-GB memory, and 600-GB disk storage. The operating
system of each VM is Ubuntu 14.04 LTS 64-bit. All these
VMs are connected by a local area network (LAN) or VLAN
inside the Aliyun.com ECS cloud.

In the large-scale deployment, we directly conduct our
experiment with the largest configuration r ¼ 5 and n ¼ 4M,
and the major performance results are listed in Table 3.
In a stable state, the sync delay is considerably reduced
by LightSync from 4.92 minutes to 1.19 minutes, and the
network overhead is substantially reduced from 1758 to
37 MB. Also, in the presence of data updates and node
failures, we observe obvious reductions in both sync delay
and network overhead brought by LightSync. On the other
hand, we notice that in most cases LightSync incurs more
CPU and memory usages, although both usages are quite
low and thus well affordable. To facilitate the comparison of
key performance in lab-scale and large-scale experiments,
we visualize them in Figs. 39, 40, 41 and 42. Surprisingly, we
find that the sync performance with many relatively weak

VMs is considerably better than that with 5 powerful physi-
cal servers. The reason can be traced back to the composition
of a data partition again (similar to the reason in Section 3.2).
Specifically, in the large-scale deployment the number of
partitions is p � 262144. Compared with the case of lab-scale
deployment (when r ¼ 5 and n ¼ 4M), the same number
(�262144) of partitions have to store muchmore (64=5 times)
objects. Thus, the size of each syncmessage is either enlarged
(for the Original object sync protocol) or unchanged (for
LightSync), but the number of sync messages exchanged per
node (i.e., r�pN) definitely decreases.

6.4 Object Sync Protocols using Other Topologies

To conduct a proper and fair comparison between Light-
Sync and its counterparts, we first investigated existing
object sync protocols using other topologies (i.e., the Pri-
mary/Backup protocol [32] using the Star topology and the
Chain Replication protocol [33] using the Chain topology)
adopted by relevant distributed systems or storage systems
(e.g., Zookeeper [20], WheelFS [21], and Windows Azure
Storage [23]). Then, we re-implemented them in realistic

TABLE 3
Performance of Large-Scale Experiments when r ¼ 5 and n ¼ 4M

Experimental Scenario Sync Delay (minute) Network Overhead (MB) CPU (%) Memory (MB)

In a stable state Original: 4.92 Original: 1758 Original: 7.3 Original: 36.86
LightSync: 1.19 LightSync: 37 LightSync: 11.5 LightSync: 49.15

Right after 10% object creations Original: 96.20 Original: 1709 Original: 4.0 Original:33.8
LightSync: 68.95 LightSync: 38 LightSync: 6.1 LightSync: 49.1

Right after 10% object deletions Original: 90.2 Original: 1720 Original: 2.5 Original:33.8
LightSync: 76.53 LightSync: 40 LightSync: 3.1 LightSync: 49.1

In the presence of a node failure Original: 1680 (28 hours) Original: 1680 Original: 1 Original:41
LightSync: 2 LightSync: 34 LightSync: 10.4 LightSync: 41

During a failed node’s rejoining process Original: 47.62 Original: 2115 Original: 5.4 Original:41
LightSync: 30 LightSync: 153 LightSync: 9.3 LightSync: 41

Fig. 39. Sync delay in lab-scale experiments.

Fig. 40. Sync delay in large-scale experiments.

Fig. 41. Network overhead in lab-scale experiments.

Fig. 42. Network overhead in large-scale experiments.

RUAN ET AL.: ON THE SYNCHRONIZATION BOTTLENECK OF OPENSTACK SWIFT-LIKE CLOUD STORAGE SYSTEMS 2071

OpenStack Swift systems and compared them with our pro-
posed LightSync solution (using the Ring topology) in terms
of sync delay, network overhead, CPU usage, and memory
usage. The experiment results (Figs. 43, 44, 45, and 46) show
that LightSync essentially outperforms its counterparts in
terms of sync delay. Quantitatively, sync delay of LightSync
is obviously shorter by 2–8 times. Besides, its CPU usage,
memory usage and network overhead are still affordable,
though not always the most desirable.

7 RELATED WORK

In recent years, numerous cloud storage systems have been
designed and implemented with a variety of consistency
models and object sync protocols. For almost every imagin-
able combination of features, certain object-based or key-
value stores exist, and thus they occupy every point in the
space of consistency, reliability, availability, and perfor-
mance trade-offs. These stores includeAmazon S3,Windows
Azure Storage [23], OpenStack Swift, Riak S2, Cassandra,
and so forth. In this paper, we focus on improving the sync
performance of achieving eventual consistency—the most
widely adopted consistency model at the moment, based on
a preliminary conference version [34].

Generally speaking, eventual consistency is a catch-all
phrase that covers any system where replicas may diverge
in short term as long as the divergence is eventually
repaired [24]. In practice, systems that embrace eventual
consistency have their specific advantages and limitations.
Some systems aim to improve efficiency by waiving the sta-
ble history properties, either by rolling back operations and
re-executing them in a different order at some of the replicas
[35], or by resorting to a last-writer-wins strategy which
often results in loss of concurrent updates [36]. Other sys-
tems expose multiple values from divergent branches of
operation replicas either directly to the client [37] or to an
application-specific conflict resolution procedure [24].

Particularly, efforts have been made to improve the
working efficiency of OpenStack Swift’s object sync process,
e.g., by computing hash values of objects in real time and
deploying an agent to check the logs for PUT and DELETE
operations [38]. Compared with LightSync, they fail to

provide quantitative evaluation results in data-intensive
deployments. Besides, some other studies [39], [40], [41],
[42], [43], [44] reveal that the node placement/organization
strategy in object storage services may lead to data availabil-
ity bottlenecks, but they do not dive deeper into the sync
bottleneck problem.

8 CONCLUSION

OpenStack Swift-like cloud storage systems have been
widely used in recent years. In this paper, we study the
object sync protocol that is fundamental to their perfor-
mance, particularly the key parameters r (number of repli-
cas for each object) and n (number of objects hosted by each
storage node). Our measurement study reveals that the orig-
inal object sync protocol of OpenStack Swift is not well
suited to data-intensive scenarios. In particular, when r > 3
and n� 1;000, the object sync delay is unacceptably long
and the network overhead is unnecessarily high. This phe-
nomenon is called the sync bottleneck problem. In addition,
this problem is considerably aggravated in the presence of
data updates and node failures, and cannot be fundamen-
tally solved by increasing the number of sync threads.
Guided by an in-depth investigation into the source code
of OpenStack Swift-like systems, we design and implement
a novel protocol, named LightSync, to practically solve
the sync bottleneck problem. Both theoretical analysis and
real-world experiments confirm the efficacy of LightSync.

ACKNOWLEDGMENTS

This work is supported by the High-Tech R&D Program of
China (“863–China Cloud” Major Program) under grant
2015AA01A201, and the NSFC under grants 61471217,
61432002, 61632020 and 61472337. Thierry Titcheu is sup-
ported by the AFR PhD Grant of the National Research
Fund, Luxembourg. Ennan Zhai is partly supported by
the NSF under grants CCF-1302327 and CCF-1715387.

REFERENCES

[1] N. Bonvin, T. G. Papaioannou, and K. Aberer, “A self-organized,
fault-tolerant and scalable replication scheme for cloud storage,”
in Proc. 1st ACM Symp. Cloud Comput., 2010, pp. 205–216.

Fig. 43. Sync delay of protocols using different topologies.

Fig. 44. Network overhead of protocols using different topologies.

Fig. 45. CPU usage of protocols using different topologies.

Fig. 46. Memory usage of protocols using different topologies.

2072 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

[2] I. Drago, M. Mellia, M. Munaf�o, A. Sperotto, R. Sadre, and A. Pras,
“Inside dropbox: Understanding personal cloud storage services,”
in Proc. Internet Meas. Conf., 2012, pp. 481–494.

[3] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras,
“Benchmarking personal cloud storage,” in Proc. Conf. Internet
Meas. Conf., 2013, pp. 205–212.

[4] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Zhao, C. Jin, Z.-L. Zhang, and
Y. Dai, “Efficient batched synchronization in dropbox-like cloud
storage services,” in Proc. ACM/IFIP/USENIX Int. Conf. Distrib.
Syst. Platforms Open Distrib. Process., 2013, pp. 307–327.

[5] Z. Li, Z.-L. Zhang, and Y. Dai, “Coarse-grained cloud synchroni-
zation mechanism design may lead to severe traffic overuse,”
J. Tsinghua Sci. Technol., vol. 18, no. 3, pp. 286–297, 2013.

[6] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng, Y. Liu, Y. Dai, and
Z.-L. Zhang, “Towards network-level efficiency for cloud storage
services,” in Proc. Conf. Internet Meas. Conf., 2014, pp. 115–128.

[7] Z. Li, X. Wang, N. Huang, M. A. Kaafar, Z. Li, J. Zhou, G. Xie,
and P. Steenkiste, “An empirical analysis of a large-scale mobile
cloud storage service,” in Proc. Internet Meas. Conf., 2016, pp. 287–
301.

[8] Q. Zhang, Z. Li, Z. Yang, S. Li, S. Li, Y. Guo, and Y. Dai,
“DeltaCFS: Boosting delta sync for cloud storage services by
learning from NFS,” in Proc. Int. Conf. Distrib. Comput. Syst., 2017,
pp. 264–275.

[9] H. Xiao, Z. Li, E. Zhai, T. Xu, Y. Li, Y. Liu, Q. Zhang, and Y. Liu,
“Towards web-based delta synchronization for cloud storage serv-
ices,” in Proc. USENIX Conf. File Storage Technol., 2018, pp. 155–168.

[10] J. E, Y. Cui, P. Wang, Z. Li, and C. Zhang, “CoCloud: Enabling
efficient cross-cloud file collaboration based on inefficient web
APIs,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 1, pp. 56–69,
Jan. 2018.

[11] S. Gilbert and N. A. Lynch, “Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant web services,”
SIGACT News, vol. 33, no. 2, pp. 51–59, 2002.

[12] OpenStack Swift Tutorial SAIO - Swift All In One, (2016). [Online].
Available: http://docs.openstack.org/developer/swift/
development_saio.html

[13] OpenStack Storage Tutorial, (2011). [Online]. Available: http://
storageconference.us/2011/Presentations/Tutorial/4.McKenty.pdf

[14] OpenStack Installation Guide for Ubuntu 14.04, (2016). [Online].
Available: http://docs.openstack.org/icehouse/install-guide/
install/apt/content

[15] Storage Policies-SwiftStack Documentation, (2017). [Online].
Available: https://www.swiftstack.com/docs/admin/cluster_
management/policies.html

[16] M. Zhong, K. Shen, and J. I. Seiferas, “Replication degree customi-
zation for high availability,” in Proc. 3rd ACM SIGOPS/EuroSys
Eur. Conf. Comput. Syst., 2008, pp. 55–68.

[17] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan, “Availability in globally
distributed storage systems,” in Proc. USENIX Symp. Operating
Syst. Des. Implementation, 2010, pp. 61–74.

[18] TheActiveAnti-entropyComponent of Riak, (2017). [Online]. Avail-
able: http://docs.basho.com/riak/latest/theory/concepts/aae

[19] The Anti-entropy Node Repair Component of Cassandra, (2016).
[Online]. Available: http://docs.datastax.com/en/cassandra/
2.1/cassandra/operations/ops_rep

[20] F. J. Reed and Benjamin, ZooKeeper : Distributed Process Coordina-
tion. Newton, MA, USA: O’Reilly Media, Inc., 2013.

[21] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F. Kaashoek,
and R. Morris, “Flexible, wide-area storage for distributed
systems with WheelFS,” in Proc. 6th USENIX Symp. Netw. Syst.
Des. Implementation, 2009, pp. 43–58.

[22] R. Guerraoui, D. Kostic, R. R. Levy, and V. Quema, “A high
throughput atomic storage algorithm,” in Proc. Int. Conf. Distrib.
Comput. Syst., 2007, pp. 19–19.

[23] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. Mckelvie, Y. Xu, S. Srivastav, J. Wu, and H. Simitci, “Windows
azure storage: A highly available cloud storage service with
strong consistency,” in Proc. 23rd ACM Symp. Operating Syst.
Principles, 2011, pp. 143–157.

[24] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and
C. Hauser, “Managing update conflicts in bayou, a weakly
connected replicated storage system,” in Proc. 15th ACM Symp.
Operating Syst. Principles, 1995, pp. 172–182.

[25] D. K. Gifford, “Weighted voting for replicated data,” in Proc. 7th
ACM Symp. Operating Syst. Principles, 1979, pp. 150–162.

[26] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web,”
in Proc. 29th Annu. ACM Symp. Theory Comput., 1997, pp. 654–663.

[27] G. Chen and Z. Li, Peer-to-Peer Network: Structure, Application and
Design. Beijing, China: Tsinghua Univ. Press, 2007.

[28] SwiftStack Benchmark Suite (ssbench) Project, (2016). [Online].
Available: http://github.com/swiftstack/ssbench

[29] Y. Cheng, A. Gupta, and A. Butt, “An in-memory object caching
framework with adaptive load balancing,” in Proc. 10th Eur. Conf.
Comput. Syst., 2015, Art. no. 4.

[30] R. C. Merkle, “Protocols for public key cryptosystems,” in Proc.
IEEE Symp. Security Privacy, Apr. 1980, pp. 122–122.

[31] Proxy Configuration, (2014). [Online]. Available: https://docs.
openstack.org/icehouse/config-reference/content/proxy-server-
configuration.html

[32] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg,
“Distributed systems (2Nd Ed.),” New York, NY, USA/Reading,
MA, USA: ACM Press/Addison-Wesley Publishing Co., 1993, ch.
The Primary-backup Approach, pp. 199–216.

[33] R. Van Renesse and F. B. Schneider, “Chain replication for
supporting high throughput and availability,” in Proc. 6th Conf.
Symp. Opearting Syst. Des. Implementation, 2004, pp. 4–4.

[34] T. T. Chekam, E. Zhai, Z. Li, Y. Cui, and K. Ren, “On the synchro-
nization bottleneck of OpenStack swift-like cloud storage sys-
tems,” in Proc. IEEE INFOCOM, 2016, pp. 1–9.

[35] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and P. Maniatis,
“Zeno: Eventually consistenct byzantine-fault tolerance,” in Proc.
6th USENIX Symp. Netw. Syst. Des. implementation, 2009, pp. 169–
184.

[36] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Don’t settle for eventual: Scalable causal consistency for wide-
area storage with COPS,” in Proc. 23rd ACM Symp. Operating Syst.
Principles, 2011, pp. 401–416.

[37] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and
M. Walfish, “Depot: Cloud storage with minimal trust,” ACM
Trans. Comput. Syst., vol. 29, no. 4, 2011, Art. no. 12.

[38] OpenStack Swift Improved Object Replicator, (2012). [Online].
Available: http://wiki.openstack.org/wiki/Swift-Improved-
Object-Replicator

[39] A. Corradi, M. Fanelli, and L. Foschini, “VM consolidation: A real
case based on OpenStack cloud,” Future Generation Comput. Syst.,
vol. 32, pp. 118–127, 2014.

[40] E. Zhai, R. Chen, D. I. Wolinsky, and B. Ford, “Heading off corre-
lated failures through independence-as-a-service,” in Proc. 11th
USENIXConf. Operating Syst. Des. Implementation, 2014, pp. 317–334.

[41] E. Zhai, R. Chen, D. I. Wolinsky, and B. Ford, “An untold story of
redundant clouds: Making your service deployment truly
reliable,” in Proc. 9th Workshop Hot Topics Dependable Syst., 2013,
Art. no. 3.

[42] Q. Zhang, S. Li, Z. Li, Y. Xing, Z. Yang, and Y. Dai, “CHARM:
A cost-efficient multi-cloud data hosting scheme with high
availability,” IEEE Trans. Cloud Comput., vol. 3, no. 3, pp. 372–386,
pp. 372–386, 2015.

[43] Z. Lai, Y. Cui, M. Li, Z. Li, N. Dai, and Y. Chen, “TailCutter:
Wisely cutting tail latency in cloud CDN under cost constraints,”
in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., 2016, pp. 1–9.

[44] G. Wu, F. Liu, H. Tang, K. Huang, Q. Zhang, Z. Li, B. Y. Zhao, and
H. Jin, “On the performance of cloud storage applications with
global measurement,” in Proc. IEEE/ACM 24th Int. Symp. Quality
Service, 2016, pp. 1–10.

Mingkang Ruan received the BSc degree in soft-
ware engineering from Sun Yat-sen University,
Guangzhou, China, in 2014. He is working toward
the MEng degree in the School of Software,
Tsinghua University, Beijing, China. His research
areas mainly include cloud computing/storage, big
data analysis, and natural language processing.

RUAN ET AL.: ON THE SYNCHRONIZATION BOTTLENECK OF OPENSTACK SWIFT-LIKE CLOUD STORAGE SYSTEMS 2073

http://docs.openstack.org/developer/swift/development_saio.html
http://docs.openstack.org/developer/swift/development_saio.html
http://storageconference.us/2011/Presentations/Tutorial/4.McKenty.pdf
http://storageconference.us/2011/Presentations/Tutorial/4.McKenty.pdf
http://docs.openstack.org/icehouse/install-guide/install/apt/content
http://docs.openstack.org/icehouse/install-guide/install/apt/content
https://www.swiftstack.com/docs/admin/cluster_management/policies.html
https://www.swiftstack.com/docs/admin/cluster_management/policies.html
http://docs.basho.com/riak/latest/theory/concepts/aae
http://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_rep
http://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_rep
http://github.com/swiftstack/ssbench
https://docs.openstack.org/icehouse/config-reference/content/proxy-server-configuration.html
https://docs.openstack.org/icehouse/config-reference/content/proxy-server-configuration.html
https://docs.openstack.org/icehouse/config-reference/content/proxy-server-configuration.html
http://wiki.openstack.org/wiki/Swift-Improved-Object-Replicator
http://wiki.openstack.org/wiki/Swift-Improved-Object-Replicator

Thierry Titcheu received the BSc degree in com-
puter science and technology from the University
of Science and Technology of China, in 2013,
and the MEng degree in software engineering
from the School of Software, Tsinghua University,
in 2015. He is working toward the PhD degree
in the Interdisciplinary Centre for Security,
Reliability and Trust, the University of Luxem-
bourg. His research areas comprise cloud com-
puting/storage, distributed systems, and so forth.

Ennan Zhai received the PhD and MPhil degrees
from Yale University, in 2015 and 2014, respec-
tively. He is currently an associate research
scientist in the Computer Science Department of
Yale University. His research interests mainly
include distributed system, applied cryptography,
and software verification.

Zhenhua Li received the BSc and MSc degrees
from Nanjing University, in 2005 and 2008, and
the PhD degree fromPeking University, in 2013, all
in computer science and technology. He is an
assistant professor in the School of Software,
Tsinghua University. His research areas cover
cloud computing/storage/download, big data
analysis, content distribution, and mobile Internet.
He is amember of the IEEE.

Yao Liu received the BS degree in computer
science from Nanjing University and the PhD
degree in computer science from George Mason
University. She is an assistant professor in the
Department of Computer Science, Binghamton
University. Her research areas include Internet
mobile streaming, multimedia computing, Internet
measurement and content delivery, and cloud
computing.

Jinlong E received the BE and MSc degrees
in computer software from Nankai University,
Tianjin, China, in 2007 and 2011, respectively.
He is currently working towards the PhD degree
in computer science and technology with the
Tsinghua University. His current research inter-
ests include cloud storage, content distribution,
scheduling, and mobile cloud computing.

Yong Cui received the BEng and PhD degrees
both in computer science and technology from
Tsinghua University, in 1999 and 2004, respec-
tively. He is a professor in the Department of
Computer Science and Technology, Tsinghua
University. He served or serves at the editorial
boards on the IEEE Transactions on Parallel and
Distributed Systems, the IEEE Transactions on
Cloud Computing, and the Internet Computing.
His major research interests include mobile cloud
computing and network architecture. He is a
member of the IEEE.

Hong Xu received the MASc and PhD degrees
from the Department of Electrical and Computer
Engineering, University of Toronto. He is an
assistant professor in the Department of Com-
puter Science, City University of Hong Kong.
His research interests include data center net-
working, NFV, and cloud computing. He was the
recipient of an Early Career Scheme Grant from
Hong Kong Research Grants Council, in 2014.
He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2074 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

