
NetSync: A Network Adaptive and
Deduplication-Inspired Delta Synchronization

Approach for Cloud Storage Services
Wen Xia ,Member, IEEE, Can Wei , Zhenhua Li ,Member, IEEE, Xuan Wang , and Xiangyu Zou

Abstract—Delta sync (synchronization) is a key bandwidth-saving technique for cloud storage services. The representative delta sync

utility, rsync, matches data chunks by sliding a search window byte-by-byte to maximize the redundancy detection for bandwidth

efficiency. However, it is difficult for this process to cater to the forthcoming high-bandwidth cloud storage services which require

lightweight delta sync that can well support large files. Moreover, rsync employs invariant chunking and compression methods during

the sync process, making it unable to cater to services from various network environments which require the sync approach to perform

well under different network conditions. Inspired by the Content-Defined Chunking (CDC) technique used in data deduplication, we

propose NetSync, a network adaptive and CDC-based lightweight delta sync approach with less computing and protocol (metadata)

overheads than the state-of-the-art delta sync approaches. Besides, NetSync can choose appropriate compressing and chunking

strategies for different network conditions. The key idea of NetSync is (1) to simplify the process of chunk matching by proposing a fast

weak hash called FastFP that is piggybacked on the rolling hashes from CDC, and redesigning the delta sync protocol by exploiting

deduplication locality and weak/strong hash properties; (2) to minimize the sync time by adaptively choosing chunking parameters and

compression methods according to the current network conditions. Our evaluation results driven by both benchmark and real-world

datasets suggest NetSync performs 2�–10� faster and supports 30%–80%more clients than the state-of-the-art rsync-based

WebR2sync+ and deduplication-based approach.

Index Terms—rsync, content-defined chunking, network adaptive, cloud storage

Ç

1 INTRODUCTION

THE promises ofmaking data accessible anywhere and any-
time have made personal cloud storage services increas-

ingly popular, including Dropbox [1], GoogleDrive [2], and
iCloud [3]. The thriving cloud storage services impose chal-
lenges on both clients and servers with increasing network
and computing overheads, encouraging service providers to
propose more effective solutions. DropBox, for example, has
adopted delta sync to reduce the data traffic between client
and server [4], [5]. In spite of this, the sync traffic volume of
DropBox still takes up to 4% of the total internet traffic due to

the frequent interactions between clients and servers for cal-
culating the delta (modified) data, according to a study [6] on
several campus border routers. Therefore, reducing the traffic
and computing overheads, and fully leveraging the current
network bandwidth in synchronization remain important
challenges to be addressed.

As a classic model to reduce the traffic of synchronizing
files between two hosts, rsync can effectively reduce the
traffic volume. Generally speaking, rsync synchronizes file
f’ (a modified version of file f) from client to server in
three phases as follows: �1 Client sends a sync request to
server, and server splits the server file f into fix-sized
chunks, which is followed by server calculating and send-
ing fingerprints (called Checksum List) of those chunks. �2
Client uses a window sliding on client file f’ byte-by-byte,
to match possible duplicate chunks within the Checksum
List from server. �3 After finishing the byte-by-byte match-
ing, client obtains the mismatched chunks, named
Delta Bytes, and sends them to server, after which server
reconstructs client file f’ according to Delta Bytes and
server file f.

Several recent studies, including DeltaCFS [7], Panda-
Sync [8], and WebR2sync+ [9], have improved rsync in
various aspects. However, the chunk-matching process
using a byte-by-byte sliding window which can be very
time-consuming especially when the files are increasingly
large in high-bandwidth cloud storage systems [10], remains
unchanged in these rsync-based approaches. For example,
according to our study and observation, WebR2sync+ [9]
spends about 10� longer time on the byte-by-byte chunk-

� Wen Xia is with the Harbin Institute of Technology, Shenzhen, Guang-
dong 518055, China, and also with the State Key Laboratory of Computer
Architecture, Institute of Computing Technology, Chinese Academy of Sci-
ences, Beijing 518109, China. E-mail: xiawen@hit.edu.cn.

� Can Wei, Xuan Wang, and Xiangyu Zou are with the Department of
Computer Science and Technology, Harbin Institute of Technology,
Shenzhen, Guangdong 518055, China. E-mail: weican16hit@gmail.com,
wangxuan@hit.edu.cn, xiangyu.zou@hotmail.com.

� Zhenhua Li is with Tsinghua University, Beijing 100084, China.
E-mail: lizhenhua1983@gmail.com.

Manuscript received 17 Aug. 2021; revised 26 Nov. 2021; accepted 9 Jan. 2022.
Date of publication 25 Jan. 2022; date of current version 4 Apr. 2022.
This work was supported in part by NSFC under Grant 61972441, in part by
Shenzhen Science and Technology Program under Grants JCYJ2019080
6143405318, JCYJ20200109113427092, and GXWD20201230155427003-
20200821172511002, in part by Guangdong Basic and Applied Basic Research
Foundation under Grant 2021A1515012634, and in part by the State Key Lab-
oratory of Computer Architecture (ICT, CAS) under Grant CARCHA202006.
(Corresponding author: Wen Xia.)
Recommended for acceptance by J. Wang.
Digital Object Identifier no. 10.1109/TPDS.2022.3145025

2554 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0002-0472-3391
https://orcid.org/0000-0002-0472-3391
https://orcid.org/0000-0002-0472-3391
https://orcid.org/0000-0002-0472-3391
https://orcid.org/0000-0002-0472-3391
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0002-3512-0649
https://orcid.org/0000-0002-3512-0649
https://orcid.org/0000-0002-3512-0649
https://orcid.org/0000-0002-3512-0649
https://orcid.org/0000-0002-3512-0649
mailto:xiawen@hit.edu.cn
mailto:weican16hit@gmail.com
mailto:wangxuan@hit.edu.cn
mailto:xiangyu.zou@hotmail.com
mailto:lizhenhua1983@gmail.com

matching process than on the data transferring process over
the Gigabit networkwhen synchronizing a large 1GB file.

Meanwhile, synchronization should not only focus on
redundancy elimination but also need to fully utilize the net-
work bandwidth. Moreover, the imbalance of redundancy
elimination and network utilization is significant as the net-
work bandwidth varies. Commonly, the sync services choose
finer chunking granularity and may use compressors to
eliminate more redundancy under limited networks; how-
ever, this strategy may be sub-optimal when the bandwidth
is sufficiently high. According to our observation, Dsync[11],
a recently proposed sync service, could be slowed down up
to 5 times if the best configuration under the 10 Mbps net-
work is applied in a 100Mbps network.

The advance in network infrastructure makes it harder
for the current delta sync to cater to the demand of cloud
storage, given the inevitable challenges of an inherently
wider range of end-user network bandwidth and larger
cloud-hosted file size. We notice that residential connectiv-
ity to the Internet has already reached 1 Gbps in access
bandwidth, and the newly emerging 5G connectivity can
even exceed 1 Gbps, while some devices still work under
low-network bandwidth due to unstable connection or lim-
ited power consumption. Accordingly, the cloud-hosted
files have been growing in both quantity and (single-file)
size. Consequently, we have to rethink and innovate the
current delta sync design to catch up with this trend and
satisfy the user experience.

This paper mainly focuses on the two most important
metrics for sync approaches: sync performance [8] and flexi-
bility [9]. (1) Sync performance (i.e., sync latency or speed),
which directly affects the system consistency and through-
put, is a metric concerned by most users [8]. On the one
hand, higher performance could provide a better service
experience for users and avoid inconsistencies among dif-
ferent sync devices [12], [13]. On the other hand, it can also
help reduce resources cost (e.g., computation, network, etc.)
for service providers. (2) Sync flexibility, i.e., the ability to
provide optimal sync performance for users from different
resources, requires flexible designs to handle these different
situations. To improve these two metrics, in what follows,
we will address the above two challenges (i.e., the time-con-
suming byte-by-byte chunk matching and the poor network
utilization), respectively.

For the first problem, recently, data deduplication, a
chunk-level data reduction approach, has been increasingly
attractive in the design of storage systems [14]. Instead of
using a byte-wise sliding window, data deduplication splits
files into independent chunks, using a technique named Con-
tent-Defined Chunking (CDC), and then detects duplicate
chunks according to their fingerprints [15], [16]. FastCDC [16]
is a fast and efficient CDC technique widely used in data
deduplication (a detailed description of FastCDC is in Sec-
tion 3, Fig. 3). Specifically, in CDC process, a small window
(e.g., size of 64 bytes) slides on the file contents, and a chunk
boundary is declared once the hash value of the window (i.e.,
the file contents) meets a predefined condition. Therefore, the
chunk boundaries are determined by the file contents instead
of locations in the file, which adequately addresses the
“boundary-shift” problem (detailed in Section 3) and thus
eliminates more redundancy. Consequently, we believe that

the traditional time-consuming byte-wise comparison in
rsync could be discarded by introducing the CDC technique.

Although CDC has the potential to simplify the chunk-
matching process for redundancy detection, incorporating
CDC into the rsync protocol introduces new challenges,
including extra computing overhead due to the rolling-
hash-based chunking and low redundancy detection ratio
due to the coarse-grained chunk matching after CDC.

For the second problem, to achieve better flexibility and
maximize network utilization, it is reasonable to change the
sync configurations accordingly, rather than finding con-
stant configurations for any network conditions. Concretely,
it imposes two challenges:�1 monitoring the network condi-
tion without affecting the synchronization, �2 choosing the
best chunking granularity and compression method to min-
imize the overall sync time. Besides, our implementation is
based on Web browser (the most pervasive and OS-inde-
pendent access) for better platform adaptability.

To this end, we propose NetSync, a lightweight, portable,
network adaptive, and CDC-based delta sync approach for
the current cloud storage services, with less computing and
protocol (metadata) overheads. Generally, to address the
challenges mentioned above, we make the following four
critical contributions in this paper:

� Introducing Content-Defined Chunking technique
(i.e., FastCDC) to rsync for matching more identical
content and reducing network traffic. Meanwhile, we
exploit the chunking process to generate weak hash
values for chunks, called FastFP, and replace Adler32
used in rsync, which offsets additional computation
overhead introduced by Content-Defined Chunking.
Evaluation results suggest that FastFP is much faster
than Adler32 and achieves a comparable low hash
collision ratio.

� Redesigning the communication protocol to reduce
both computing overhead and network traffic: �1
first, check the weak hash, then compute and match
the the weak-hash-matched chunks’ strong hash, to
reduce most of the unnecessary computing of strong
hash on mismatched chunks; �2 merge the consecu-
tive weak-hash-matched chunks into a single large
chunk to reduce the size of Match Token (metadata
overhead) for network interactions in NetSync.

� Minimizing the sync time by the network adaptive
design: �1 network adaptive compression: choosing
the appropriate compressor for transmission accord-
ing to the current network condition obtained by the
net-aware module; �2 network adaptive chunking:
changing the chunk granularity of the CDC process
according to the current network condition to fully
utilize the potential of CDC and current network
resources, thus minimizing the sync time.

� Comprehensive evaluations driven by real-world
and benchmark datasets illustrate that NetSync per-
forms 2�–10� faster and supports 30%–80% more
clients than the state-of-the-art rsync-based WebR2-
sync+ [9].

The rest of this paper is organized as follows. Section 2
introduces the background and related work. Section 3 dis-
cusses the deficiency of the state-of-the-art WebR2sync+

XIA ET AL.: NETSYNC: A NETWORK ADAPTIVE AND DEDUPLICATION-INSPIRED DELTA SYNCHRONIZATION APPROACH FOR CLOUD... 2555

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

approach, the potential of the CDC-based approach, and the
mismatch between the sync policy and the network condi-
tion. Section 4 describes the design and implementation
details of NetSync. Section 5 presents the evaluation results
of NetSync, including comparisons with the latest rsync-
based WebR2sync+, deduplication-based solution, and
Dsync [11] (a preliminary version of NetSync in which the
network adaptive modules are not included). Finally, Sec-
tion 6 concludes this paper.

2 RELATED WORK

Generally, there are two approaches to sync a modified file
from client to server in cloud storage: full sync and delta
sync, respectively. The former, which transfers the whole
file to server, is suitable for synchronizing small files [8]. In
contrast, the latter, which only transfers modified data of a
file (i.e., the delta) to server, can minimize the network traf-
fic and is suitable for large file synchronization.

Delta sync has a great advantage when the files are fre-
quently modified, e.g., files with multiple versions or conse-
cutive edits. A recent study [6] on several campus border
routers indicates that the traffic volume of DropBox, which
uses delta sync, accounts for 4% of the total internet traffic
due to the frequent interactions between clients and servers
for calculating the delta (modified) data, highlighting the
significance of reducing network traffic volume with delta
sync. Actually, delta sync approaches have been widely
studied by many publications including Unix diff [17],
Vcdiff [18], WebExpress [19], rsync [20], Content-
Defined Chunking (CDC) [21], [15], and delta encoding
algorithms [22], [23], [24]. Representative sync techniques
supported by the state-of-the-art cloud storage services are
summarized in Table 1 and discussed below.

a) Sync Tools Supported by Industry. Commercial cloud
storage services include Dropbox, GoogleDrive, OneDrive,
Seafile, etc. [29]. The PC clients of both Dropbox and Seafile
support delta sync, where DropBox’s sync uses Fix-Sized
Chunking (FSC) and Seafile’s sync employs Content-
Defined Chunking (CDC). To alleviate the compute over-
head, the Android client of Seafile uses full sync to avoid

energy consumed by the delta calculation in sync. Besides,
other cloud storage services such as GoogleDrive and One-
Drive also choose to support full sync for simplicity.

b) Sync Tools Proposed by Academia. Most research pro-
poses their sync tools to support delta sync for better perfor-
mance (to save network bandwidth and accelerate network
transmission). First proposed by Tridgell, rsync is a well-
known sync protocol to effectively synchronize a file
between two hosts over a network connection with limited
bandwidth [20], [30]. This approach is adopted as the stan-
dard sync protocol in GNU/Linux [27].

Recent studies, such as DeltaCFS [7], PandaSync [8], and
WebSync [9], make innovative improvements on top of
rsync. Specifically, DeltaCFS directly records the minor
modifications to reduce computing and network overheads
due to frequent synchronization. PandaSync strikes a trade-
off between full sync and delta sync since full sync can
effectively reduce the round trip time (RTT) for small files
between the client and server, while delta sync can effec-
tively reduce network traffic and sync time. WebR2sync+
[9] makes the first attempt to implement delta sync over
Web browsers, a dominant form of Internet access. To avoid
the influence of the poor performance of browsers when
executing computing-intensive byte-wise comparison of
hash values, WebR2sync+ shifts the comparison to server
and replaces the cumbersome MD5 hash function with a
lightweight hash function called SipHash. Due to the
boundary-shift problem, QuickSync [29] employs the CDC
technique rather than rsync. A dynamical chunking strat-
egy is used to adapt to bandwidth changes and remove
more redundancy of the local file. As one of the pioneers in
data deduplication, LBFS [15] splits the file into chunks
using the CDC technique, calculates and compares their
SHA-1 fingerprints to detect duplicate chunks. It finally
transmits the non-duplicate chunks from client to server.
UDS (Update-batch delayed sync) [28] uses a batched sync
strategy to avoid bandwidth overuse due to frequent modi-
fications based on Dropbox.

The notion is that, among the services mentioned above,
only Pandasync[8] and QuickSync[29] support network
adaptive optimization. Pandasync[8] focuses on choosing
different sync strategies for different network conditions.
Specifically, it chooses to use full sync or delta sync accord-
ing to the current network bandwidth to get a better sync
performance. QuickSync estimates bandwidth via network
congestion window size and chooses a proper chunk granu-
larity to improve sync efficiency.

In summary, as shown in Table 1, delta sync with local
buffer requires client to have extra storage and undertake
computing overheads while full sync is simple and compu-
tationally friendly but not bandwidth-efficient. Despite the
advantages of rsync-based approaches, the exceptionally
high computing overhead of rsync protocol due to byte-
wise comparison and hash calculation severely limits its
applicability in resource-constrained client systems, espe-
cially for synchronizing large files. Thus, this paper focuses
on providing a lightweight, portable delta sync approach
for resource-constrained client systems via Web browsers
on Mobile phones, IoT devices, etc. Thus, it is quite inconve-
nient for such a resource-constrained Web browser to main-
tain the metadata buffer of client files for delta sync.

TABLE 1
Data Sync Techniques

Source Full Sync
1 Delta Sync

Local Buffer Chunking Methods2

DropBox (W/A) [25]3 � ✓ FSC
Seafile (W) [26] � ✓ CDC
Seafile (A) [26] ✓ � �
GoogleDrive (W/A) [25] ✓ � �
OneDrive (W/A) [25] ✓ � �
rsync [27] � � FSC
DeltaCFS [7] � � FSC
PandaSync [8]

p� � FSC
WebSync [9] � � FSC
QuickSync [25] � ✓ CDC
LBFS [15] � � CDC
UDS [28] � � FSC
NetSync � � CDC

1.✓: full sync, �: delta sync, andp�: selective full sync.
2.FSC: Fix-Sized Chunking, CDC: Content-Defined Chunking.
3.W: windows client, A: android client.

2556 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

Furthermore, inspired by previous efforts on network adap-
tive design, our delta sync service can dynamically adapt to
both limited and sufficiently high bandwidth conditions.
On the other hand, deduplication-based sync [15] can avoid
byte-wise chunk matching in rsync. Note that our work is
substantially different from all the previous work (see
Table 1) in that it is the first attempt to combine the CDC
technique with the traditional rsync model to effectively
synchronize data when client is resource-constrained, i.e.,
there is no local buffer and sufficient computing capacity
for executing rsync-like delta sync protocols on client.

3 CHALLENGES AND MOTIVATIONS

To better understand the strengths and weaknesses of
rsync [30], we first illustrate how it works with the help of
Fig. 1. It has a three-stage workflow:

� In stage 1, when a client needs to synchronize a file f’,
it first sends a request with the name of file f’ to
server. After receiving the client request, server
starts to split the server file f, which has the same file
name with client file f’, into Fix-Sized chunks (i.e.,
using Fixed-Sized Chunking). Meanwhile, it calcu-
lates weak but fast rolling hash values (Adler32) and
strong but slow hash values (MD5) of the chunks as
weak and strong fingerprints. Both weak and strong
fingerprints are included in Checksum List and sent
to client.

� In stage 2, upon receiving Checksum List from
server, client slides a fix-sized window on file f’as
server does, to generate chunks and their weak hash
Adler32 to match with the weak fingerprints (of
chunks in file f) in Checksum List. Note that:�1 if the
current chunk under the sliding window does not
match any Adler32 hashes in Checksum List, the
window will slide further byte by byte until a match
is found. �2 If a weak-hash-matched chunk is found,
its strong hash MD5 will be calculated and compared
with the corresponding chunk’s MD5 in Checksum
List to confirm if it is a duplicate chunk. Once the
MD5 hash values of these two chunks are matched
(i.e., the two chunks are duplicates), the sliding win-
dow will slide with the size of the fixed window. If
the MD5 is mismatched, it will continue the byte-to-
byte sliding. This stage takes a rather long time due

to the byte-by-byte sliding window-based chunk
matching.

� In stage 3, client generates Delta Bytes according to
stage 2, which includes the mismatched chunks and
their metadata, and sends them to server where file
f’will be reconstructed by file f + Delta Bytes.

WebR2sync+ [14] is designed based on rsync and imple-
mented on Web browser for better platform adaptability.
WebR2sync+ shifts the chunk-matching process from client
to server to adapt to the low computing capacity of Web cli-
ent. Its workflow is also three-stage, as shown in Fig. 2.

� In Stage 1, in contrast to rsync, the pre-treatment
(i.e., the chunking and weak hash computing pro-
cess) is moved from server to client, and the strong
hash MD5 is replaced by a faster hash SipHash.

� In Stage 2, the chunk-matching process is moved
from client to server, and the strong hash MD5 is
changed into SipHash. The operation in this stage is
almost the same as rsync. After that, Match Token
that indicates which chunks are matched will be sent
to client.

� In Stage 3, client generates Delta Bytes and sends
them to server, and file f’ is reconstructed according
to file f and Delta Bytes, which is the same as rsync.

The Weak Point of Fix-Sized Chunking (FSC for Short).
Although WebR2sync+ is improved over rsync, it does not
fundamentally solve the challenges faced by rsync. More
specifically, WebR2sync+ adopts FSC as its chunking
method as the rsync does. However, FSC can not handle
the boundary-shift problem: When the file is modified by
inserting or deleting, the segmentation points may be shifted
backward or forward, resulting in the mismatch of the fol-
lowing chunks. BothWebR2sync+ and rsync adopt the ver-
batim comparing algorithm to solve this problem: slide a
matching window byte-by-byte until finding a matched
chunk. However, this algorithm may lead to high annoying
computing overhead, and in the worst case, the matching
window needs to slide from the beginning to the end of the
file byte-by-byte [22]. By contrast, Content-Defined Chunk-
ing (CDC) technique used in data deduplication provides an

Fig. 1. Workflow chart of rsync.

Fig. 2. Workflow chart of WebR2sync+.

XIA ET AL.: NETSYNC: A NETWORK ADAPTIVE AND DEDUPLICATION-INSPIRED DELTA SYNCHRONIZATION APPROACH FOR CLOUD... 2557

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

opportunity to avoid this heavy calculation of overlapping
chunks.

Introducing Content-Defined Chunking (CDC) to the rsync
-Based Process. CDC is proposed to solve the boundary-shift
problem. As shown in Fig. 3, CDC applies a sliding window
on the content of files and computes a hash value (e.g.,
Rabin [31], Gear [24]) of the window. A chunk cut-point is
declared if the hash value satisfies some predefined condi-
tion. That is to say, the chunks are divided according to file
contents rather than the boundary index. This enables CDC
to solve the boundary-shift problem. As shown in Fig. 3,
although the boundary indexes of chunks C3 and C4 in file
V2 have been shifted due to file modification, C3 and C4 still
can be identified for data deduplication (with file V1) by the
CDC technique.

However, the CDC process introduces additional com-
puting overhead for delta sync, i.e., computing rolling
hashes for chunking. Further, CDC may lead to more net-
work traffic than rsync-based approaches since it may fail
to eliminate redundancy among similar chunks (i.e., the
very similar chunks C2 and C5 in Fig. 3).

Nevertheless, the CDC technique remains attractive
because it greatly simplifies the chunk fingerprinting and
indexing process and generates much fewer chunks for fin-
gerprinting and indexing than the traditional rsync-based
approaches, especially for large files. Therefore, to fully cap-
italize on the strengths while avoiding weaknesses of the
CDC technique, we try to propose a novel and efficient
CDC-based sync approach to significantly simplify the delta
sync process, as detailed later in Section 4.

TheMismatch Between the Sync Policy andNetwork Condition.
Delta sync eliminates duplicate data chunks and compresses
unique chunks to reduce the data transmission time, but it
may be fruitless when the network bandwidth is sufficiently
high. Commonly, more compacted data transmission incurs
higher computing overhead, and inappropriate chunking or
compressing could significantly bottleneck the overall sync
performance [32]. More specifically, finer chunking and com-
pressor with a higher compression ratio should be applied
under a limited network. A coarser chunking granularity and
lightweight compressor should be adopted when the net-
work bandwidth is sufficiently high. According to our
observation, compared with the optimal configuration, the
chunking/compressing module performance that follows
the configuration in Dsync is 3.6�/5� slower, and a carefully
chosen invariant chunking/compression policy is still 2.4�/
2.8� slower in certain bandwidths.

To strike a perfect balance between the computing and
transmission overhead for varying network conditions, we

develop a network prober that accurately probes the current
network bandwidth and a chunking/compression policy
selector that empirically finds the optimal configuration
and minimizes the overall sync latency.

4 DESIGN AND IMPLEMENTATION

4.1 Overview

Architecture Overview. As shown in Fig. 4, NetSync com-
prises a series of modules: the chunker (i.e., chunking mod-
ule), chunk matcher, file patcher, network monitor, and
network adaptive parameter selector.

� Chunker. In NetSync, the client and the server files
will be first divided into several chunks by Content-
Defined Chunking (i.e., FastCDC) for future dupli-
cate detection.

� Weak/Strong hashing. In NetSync, this module is
embedded in chunker and matcher. In this module,
two-level hash values (i.e., weak/strong hash) are
calculated for checking duplicate chunks. The weak
hash, which is fast with low computing overhead, is
used to quickly check the potential duplicate chunks
that, once identified, are further confirmed by the
strong hash, which is cryptographically secure, to
avoid a hash collision. Otherwise, if weak hash mis-
matches, the chunk is marked as unique, and thus
strong hash calculation will be skipped. Note that
the original strong hash SipHash used in WebR2-
sync+ [9] is substituted with SHA-1 out of cryptogra-
phy concern [14] in NetSync.

� Matcher (Hash matching). In NetSync, the weak
hash values of chunks (i.e., FastFP), will be com-
pared to find the potentially-matched chunks on
server, and their strong hash values will be further
confirmed on clients. Only the chunks whose strong
hash values (i.e., SHA-1) are matched will be
regarded as duplicates. Otherwise, they will be
marked as new chunks (i.e., delta data) and sent to
server.

� Communication protocol. It is responsible for
interactions between client and server in NetSync. It
checks the above-mentioned weak and strong hash
values of files and ultimately transfers the delta data
for synchronization.

� Network adaptive selector. This module is
responsible for choosing the best configuration in
NetSync (i.e., the suitable compressor and chunking
granularity). It periodically probes the network con-
dition (Network Monitor) and sets up the service

Fig. 3. The CDC technique for chunk-level data deduplication. It applies
a sliding window on the content of files and computes a hash value of
the window. A chunk cut-point (chunking point) is declared if the hash
value ”fp” of the sliding window satisfies a predefined condition.

Fig. 4. NetSync system overview.

2558 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

to optimize the sync performance with the best effort
from Compression Selector and Chunking

Selector.
General Workflow Overview.Here we briefly illustrate how

NetSync works along with the components in Fig. 4. �1
Network Monitor probes the network condition and sets
up the Sync process for optimal performance. �2 Sync

process starts to work, client-side chunker splits the cli-
ent file into chunks via FastCDC and sends the metadata to
server. �3 The server-side chunker splits the server file in
the same way.�4 The server-side matcher lists weak-hash-
matched chunks (i.e., the possible duplicate chunks)
between client and server files and sends their ID and
strong hash values to client. �5 The client-side matcher

checks strong hashes of these chunks, and patcher sends
non-duplicate chunks to server.�6 The server-side patcher
integrates the information of duplicate and non-duplicate
chunks to restore the client file on server-side, and then the
synchronization ends. Note that this is a brief description,
and we have hidden many technical details here; a detailed
workflow of NetSync with these six key components will be
presented in Subsection 4.3 and 4.4.

Key Challenges, Motivations, and Corresponding Designs
Overview. As discussed in Section 3, introducing CDC into
rsync-based approaches simplifies the byte-wise searching.
However, we find it has three defects: �1 CDC incurs extra
computing overhead. �2 The original communication proto-
col for rsync-based synchronization is not efficient for the
CDC-based approach, specially, the strong hash computa-
tion and some network traffic for mismatched chunks are
unnecessary in NetSync. �3 The configuration for the intui-
tive design may be sub-optimal to general cases. In the fol-
lowing subsections, we will analyze and solve these three
problems: For defect�1 , we utilize the hash value generated
by FastCDC and further develop a branch-miss-free exten-
sion, named FastFP, to replace Adler32 (in Subsection 4.2).
For defect �2 , we redesign the communication protocol to
eliminate the strong hash computation and metadata trans-
mission for mismatched chunks (in Subsection 4.3). For
defect�3 , we develop a network-aware module to adaptively
find the optimal configuration regarding different scenarios
(in Subsection 4.4).

4.2 FastFP: An Efficient Weak Hash by-Product
of CDC

As an excellent candidate to substitute FSC for its low com-
puting overhead among the CDC techniques, FastCDC[16] is
adopted in NetSync. In this subsection, we elaborate on a
novel fast and homogeneous weak hash algorithm (called
FastFP) to make full use of the CDC computation results and
offset the extra computing overhead introduced by FastCDC.

Intuition. The original chunking process (FSC) has almost
no computing overhead under ideal conditions in the
rsync-based approaches (leave out the boundary-shift
problem discussed in Section 1), while a weak fingerprint
(Adler32) needs to be calculated after chunking inevitably.
As introduced earlier, the CDC algorithm judges the chunk
boundary if the hash value of the sliding window satisfies a
predefined value. Our intuition is to replace Adler32 with
the “CDC by-product” (the hash value generated from the
sliding window), i.e., to transform the two processes of

chunking (FSC) and weak hashing (Adler32) in rsync, into
a more efficient process CDC (along with FastFP) in our
design. Once the newly constructed weak hash FastFP out-
performs Adler32, namely, the sync approach using “CDC
+ FastFP” outperforms the original rsync-based approach
with “FSC + Adler32”, the extra computing overhead of
introducing CDC is offset. Based on this intuition, the newly
constructed weak hash should meet the following two key
features: uniformity (low hash collision rate) and high
speed (faster than Adler32 to help offset CDC overhead).

Uniformity. As shown in Equation (1), FastCDC is a hash-
ing process that generates rolling hashes of a chunk by itera-
tively shifting the mapped value of each byte content b and
summing them up, where the mapping is predefined in the
Gear array G½ � (a random integer array) [16]. During the
CDC process, a chunk cut-point is declared if the hash value
satisfies a predefined condition. The generated 32-bits “fp”,
which satisfies the predefined chunk cut-point condition, is
named LastFP, as shown in Fig. 5). As a weak hash, it has a
much higher collision ratio than Adler32 because it is only
relevant to the contents within 32 Bytes from the cut point,
while Adler32 covers the whole chunk.

fp ¼ fp < < 1ð Þ þG bð Þ (1)

To cover all contents of a chunk, we propose FastFP(+L)
and FastFP, as shown in Fig. 5. FastFP(+L) adds the hash
value of the sliding window every time it strides over a dis-
tance of L and can be tuned by changing the operation
(ADD or XOR) and the stride (L) to concatenate the finger-
prints of the window. Combinations of different stride dis-
tance (8/16/32B) and concatenating operations (ADD/
XOR) has been evaluated in our previous work [11]. To
avoid inconsistencies, unless specifically declared, we set
L ¼ 16 in our later evaluation. Further, to achieve higher
speed, we propose FastFP, which tunes the stride to be 1
byte and it has equivalent uniformity as Adler32, which
will be evaluated and discussed in Subsection 5.2.

High Hashing Speed. To speed up the hashing process, we
try to make FastFP branchless. As mentioned above, to fully
utilize the sliding calculation process of FastCDC, it tries to
reduce the calculation by summing up the window’s hash
values in a predefined stride. However, our latest observa-
tion has overthrown the design of stridden summing up.
Modern processors work well ahead of the currently execut-
ing instructions, and the pipelining works best when the

Fig. 5. The calculation and working process of FastFP(+L) and FastFP
using FastCDC, note that here “L” is an integer no less than one, which
represents the jumping bits of the FastFP(+L), and “SW” represents
“Sliding Window”.

XIA ET AL.: NETSYNC: A NETWORK ADAPTIVE AND DEDUPLICATION-INSPIRED DELTA SYNCHRONIZATION APPROACH FOR CLOUD... 2559

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

instructions follow a serial order. However, when a branch is
encountered, even with the branch prediction, the CPU still
has to discard the speculatively executed results and restart
the instruction fetch process [33] if the prediction is incorrect.

The calculation process of the current FastFP(+L) can be
summarized in Algorithm 1. If the prediction is correct and
the branch is not taken, CPU has to spare one or two more
instructions to judge the condition, but it has to spare more
CPU cycles to pause, reload instructions and sum up the fin-
gerprint of the sliding window when the branch should be
taken. It means summing up the fingerprints with a stride
does not save much time but incurs a significant mispredic-
tion penalty.

Algorithm 1. The Calculation of FastFP(+L) During
Content-Defined Chunking (CDC)

Input: data stream src, length n, position pos, random integer
array G½ �1, jumping bits L

Output: weak hash fastFP , cut point i
fastFP 0, fastFP 0,Mask 0x0000d9030353;
for i pos; i < n; iþþ; do
fp ¼ fp < < 1þG½src½ i ��2
if !ði % LÞ then
fastFPþ ¼fp; // Update the weak hash;

end
if !ðfp&MaskÞ then
return ðfastFP; iÞ; //CDC is finished;

end
end
return ðfastFP; iÞ; //CDC is finished;

1. Length of array G½ � is 256 (because the byte content
range is 0–255).
2. G½src½ i �� means mapping the byte content src½ i � into
random bits.
Therefore, we propose FastFP, which is almost the same

as FastFP(+L), and the only difference is that FastFP does
not jump extra bits. As shown in Fig. 5, “L” is set to 1 in
FastFP, and FastFP is FastFP(+1).

Based on the LastFP and strode FastFP(+L), the branch-
less FastFP is a fast and well-distributed weak hash algo-
rithm, even compared with the widely used weak hash
algorithm Adler32 (will be evaluated in Subsection 5.2). Sig-
nificantly, FastFP has a better hashing efficiency than
Adler32, which means replacing Adler32 with FastFP can
help offset the additional computing overhead brought by
CDC. In other words, the CDC process not only divides
chunks but also produces weak hashes in NetSync, and it is
more efficient than FSC + Adler32 process in rsync.

4.3 Communication Protocol

This subsection proposes a novel communication protocol
to eliminate strong hash computation and metadata trans-
mission for mismatched chunks.

Reducing Strong Hash Computing Overhead. According to
our observation of the FastCDC-based NetSync prototype,
once the weak hash is mismatched, the computation of the
strong hash will be wasted (i.e., the strong hash computa-
tion is redundant in this case). Therefore, the computation
of the strong hash on client in the pre-treatment phase can
be reduced. Based on this observation, we construct a new

sync protocol to make the strong hash computation no lon-
ger redundant. As shown in Fig. 6, the new protocol has
several improvements on the three stages of NetSync:

� In Pre-treatment stage, NetSync splits the client file f’
into several chunks via FastCDC and calculates their
fingerprints (i.e., FastFP) (note that strong hash val-
ues are no longer calculated in this stage). After that,
the indexes and fingerprints of the chunks are
packed into Checksum List and sent to server.

� In Matching stage, after receiving Checksum List,
server splits server file f into chunks by FastCDC and
calculates the weak hashes as client does. Then server
searches Checksum List to find the weak-hash-
matched (i.e., potentially duplicate) chunks. For the
weak-hash-matched chunks in file f, server will com-
pute their SHA-1 values for further duplicate confir-
mation on client. Then server sends Match Tokens,
which includes all weak-hash-matched chunks’ indi-
ces of file f’ and SHA-1 values of matched chunks in
file f to client. After receiving Match Tokens from
server, client checks SHA-1 values of weak-hash-
matched chunks of file f’ and records the duplicate
chunks’ IDs.

� In Patching stage, the mismatched chunks, together
with their indices, form Delta Bytes and are packed
into Patch Tokens and sent to server. Eventually,
server reconstructs file f into client file version
f’according to Patch Tokens.

Compared with the preliminary FastCDC-based NetSync
protocol, client does not calculate SHA-1 values of all
chunks. Instead, it only calculates SHA-1 values of weak-
hash-matched chunks of file f’ according to Match Tokens
from server. Thus SHA-1 calculation is minimized, as shown
in Fig. 6. In consequence, the task of searching SHA-1 values
is shifted from server to client.

Note that some details are omitted in Fig. 6, e.g., there is a
query before each synchronization. During the query pro-
cess, the file’s name, along with its directory path and modi-
fication time, is used to confirm whether this file is first
uploaded, whether it has been modified, etc. The query is

Fig. 6. The redesigned protocol of NetSync to minimize the strong hash
calculation.

2560 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

concise and efficient but not very relevant to the sync pro-
cess, so rsync [20] omits this part in its sync protocol
framework, and we present our protocol in the same way.

Reducing Network Traffic. According to several deduplica-
tion-related studies [14], [34], duplicate chunks in a file
appear in approximately the same order throughout multi-
ple full backups or similar files with a very high probability
(called the redundancy locality). The locality can also be
exploited in NetSync for network traffic reduction. Specifi-
cally, we can collectively merge the consecutive weak-hash-
matched chunks (i.e., potential duplicates) to reduce the
metadata traffic in NetSync.

Fig. 7 shows how we merge several consecutive weak-
hash-matched chunks in NetSync. After receiving Check-
sum List from client, server splits the server file f into
chunks and calculates their weak hash values as client does.
Then server compares the weak hash values of its file f with
the weak hashes in Checksum List. The consecutive weak-
hash-matched chunks will be merged. Subsequently, only
one strong hash will be computed and sent back to client for
later comparison, in other words, the merge helps reduce
the metadata traffic. Suppose the strong hash fingerprint of
a merged chunk does not match the client’s (denoted as
“Merge Collision”). In this case, the mismatched merged
chunk will be directly transferred to server if the size of this
merged chunk is below a predefined threshold (we set it as
800KB in our design); otherwise, we will require server to
re-transfer the strong hash fingerprints of the constituent
chunks to client (to further check duplicate chunks in this
merged chunk).

The Merge Return.As discussed above, the merge can help
reduce the metadata traffic. However, the merge will be
penalized when “Merge Collision” happens. After adopting
the merge strategy, a weak hash collision may not only affect
the collided chunk itself but also affect all the chunksmerged
with it. As shown in Fig. 7, chunk½i� 1�, chunk½i�, and
chunk½iþ 1� are consecutive weak-hash-matched chunks.
Assume that only chunk½i� 1� and chunk½iþ 1� are identical,
and chunk½i� is modified (i.e., the weak hash value of chunk½i�
collides with corresponding unmodified chunk). If we do
not merge, we can eliminate the redundant chunk½i� 1� and
chunk½iþ 1�. While after merging, we need to transfer all
three chunks through the network. To make this clear, we
suppose that the probability of weak hash collision between
the modified chunk and the original chunk is p. In our case, a
merged chunk’s hash collision happens only when all the
modified constituting chunks’ collisions happen simulta-
neously. Assuming that we are merging n chunks, and they
may include several modified chunks. We denote the proba-
bility of m chunks being modified as cm (where 0 � cm � 1,

Pn
m¼0 cm ¼ 1, 0 � m � n), and in this case, the probability

that the hashes of all modified chunks collide is Pm ¼ pm,
where 0 < m � n. Therefore, the probability of “Merge
Collision” can be calculated as:

PMergeCollision ¼
Xn

m¼1
cmp

m (2)

Considering
Pn

m¼0 cm ¼ 1, we can conduct that:

ð1� c0Þpn � PMergeCollision � p (3)

Suppose we employ the merge. When Merge Collision
happens, we will get a negative return of the chunk size (e.g.,
8KB) per chunk; when there is nomerge collision, wewill get
a positive return of themetadata size (strong hash value (20B)
+ index (4B) = 24B) per chunk. The expected return R (per
chunk) will be R ¼ ð1� PMergeCollisionÞ � 24Bþ PMergeCollision �
�8KBð Þ, so we can get that when PMergeCollision is smaller than
0.003, R will be positive. While according to Equation (3),
PMergeCollision will never be larger than the weak hash’s colli-
sion rate (much smaller than 0.003), which is acceptably low
in our design. In summary, the expectedmerge return is posi-
tive. In other words, it is practical to conduct the merge in
NetSync.

In addition, the merge also helps reduce the computa-
tional overhead for strong hashing (i.e., SHA-1). Although
the data volume to be strong-hash fingerprinted remains
unchanged after themerge, the number of strong-hash calcu-
lating operations will be greatly reduced. More specifically,
the SHA-1 calculation is composed of three sub-processes,
namely SHA1_Initial (initializes a SHA1 structure),
SHA1_Update (hashes the chunk contents), and SHA1_Fi-

nal (places the results). By using the merge in NetSync, the
frequent SHA1_Initial and SHA1_Final operations will
be greatly reduced.

4.4 Network Adaptive Parameter Selector

As discussed in Section 3, the mismatch between bandwidth
and sync parameters degrades the overall performance. Net-
Sync wedges two network adaptive modules to overcome
this shortcoming, choosing the appropriate chunking and
compressing configurations accordingly. As shown in Fig. 9,
the optimal workflow of the NetSync protocol differs from
Dsync in three aspects:�1 The net-aware module may be exe-
cuted at the beginning of synchronization. In most cases, a
previous network condition is preserved and applied for
estimation in the subsequent chunking and compression
modules; otherwise, it is executed to probe the network con-
dition. �2 NetSync introduces a network adaptive compres-
sion module (Compression Selector) to strike a balance
between network and calculation resources. �3 A network
adaptive chunking module (Chunking Selector) is intro-
duced to reduce the transmitted data properly. As will be
evaluated later, the optimized protocol is apt to fully utilize
the network, and it reduces up to 2:79�/1:57� sync time
comparedwithWebR2sync+/Dsync, respectively.

Net-Aware Implementation. Among the open-sourced
speed test programs, we use LibreSpeed, a lightweight,
high-performance tool supported by most modern browsers
[35]. The speed test tool enables the module to run in the

Fig. 7. Merging several consecutive weak-hash-matched chunks into
one chunk to reduce metadata overhead.

XIA ET AL.: NETSYNC: A NETWORK ADAPTIVE AND DEDUPLICATION-INSPIRED DELTA SYNCHRONIZATION APPROACH FOR CLOUD... 2561

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

background [36], but we block the requests to synchronize
data during bandwidth estimation out of accuracy concerns.
Specifically, as shown in Fig. 8, the net-aware module (i.e.,
Network Monitor) is comprised of three stages:

� Before starting the measurement, the net-aware
module first generates some arrays filled with ran-
dom numbers, each of which takes 1MB or 256KB.

� Then it starts a series of network speed tests, each
test posts random arrays in the form of data streams
to server, and shortly afterward, it gets Acks. The
interval between each test is about 200 milliseconds.
Streams are slightly delayed so that they will not end
simultaneously, and no compression is introduced
to this test. At the end of each test, network band-
width will be calculated according to the transmitted
data volume and the corresponding transmission
time and saved into the speed tests queue.

� After a series of speed tests, the net-aware module is
terminated. We save the average results in speed

tests queue, which will be used by Compression

Selector and Chunking Selectorfor the next
period.

Network Adaptive Compression. The network transmission
accounts for a large proportion of sync latency in NetSync,
especially under limited network conditions (e.g., up to 90%
in the worst case, as indicated in Section 5). The network
time is contributed by the data transmission and the delay
to set up the connection, and it can be calculated as shown
in Equation (4).

td ¼ D

N
þ tp (4)

where D is the data size, N is the network bandwidth,
and tp is the network delay in one direction (i.e., half of
round-trip time). To decrease the transmission time, we
could either reduce the size of transferred data or use a
high-bandwidth network (higher N and lower tp). Given
the network condition, the common practice is to apply
data compression. However, the default per-message
deflate compression extension supported in WebSocket

protocol [37] may be sub-optimal regarding network
conditions.

Essentially, data compression during synchronization is
a trade-off between CPU time and network time. With the
compression introduced, the compensated transferring time
(compressing + transferring) can be calculated below.

txðDÞ ¼ D �Rx

N
þ tcxðDÞ þ tdxðDÞ þ tp (5)

In Equation (5), apart from the parameters mentioned
above, Rx is the compression ratio of compressor x, tcxðDÞ is
the time spent on compressing the data of size D, and
tdxðDÞ is the corresponding decompressing time. In com-
mon sense, a compressor with a higher compression ratio
takes more CPU time. Under limited network conditions,
the sync may not benefit much from fast but insufficient
compression and spend much time transferring the data.
On the contrary, if the bandwidth is sufficiently high and
the data is most compressed, the CPU may be bottle-necked
by the compressor. In order to maximize the sync perfor-
mance in NetSync, we need to strike a balance between
compression overhead and network transmission time.

The coefficients Rx, tcx, and tdx cannot be directly
inferred in terms of specific compressors. Instead, we could
run different compressors and estimate their coefficients.
After collecting the features of different compressors, the
Compression Selector chooses a compressor that mini-
mizes the compensated transferring time in Equation (5).

Network Adaptive Chunking. Apart from the compression
module, CDC parameters, especially the chunking size, also
affect the computation and communication overheads in
the sync process, thus affecting the sync latency. The
rsync-based approaches [9], [38], and our former work [11]
choose 8KB as the expected chunk size. As we choose a
smaller chunk size, a series of reactions happen:

� More chunks will be generated, which results in
more chunking and hashing overheads.

� More chunks’ metadata will be generated, which
leads tomore overhead for the network transmission.

Fig. 8. The workflow chart of the net-aware module.
Fig. 9. The complete NetSync protocol.

2562 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

� A finer chunking granularity also means more data
reduction and high network transmission efficiency.
Moreover, this saves the computing overhead of the
compression during sync.

When we choose a coarser chunking granularity, the
series of reactions will behave otherwise accordingly.

Considering all the reactions of changing the chunking
granularity described above, we can get a general choice for
Chunking Selector. When the network bandwidth is
low, we can set a smaller chunk size for chunker, which
helps minimize the network transmission time while
increasing computational overheads; otherwise, we set a
larger chunk size. Specifically, the initial chunk size is set to
1KB, and with better/worse network conditions, Chunking
Selector chooses a larger/smaller chunk size (use the
chunk sizes of 512B, 1KB, and 2KB for network band-
widths ð0; 10Þ, [10,40), and ½40;þ1Þ (Mbps) respectively)
according to our experimental studies (see Fig. 16 in Subsec-
tion 5.4). Moreover, our later evaluation results in Subsec-
tion 5.4 indicate that the chunking sizes selected by
Chunking Selector perform well in NetSync.

5 EVALUATION

In this section, we first introduce the experimental setups for
NetSync. Then we conduct a sensitivity study of NetSync
and give some evaluations. Besides, an overall comparison
between WebR2sync+ [9], deduplication-based solutions,
Dsync, andNetSync solutions are evaluated and discussed.

5.1 Experimental Setups

Experimental Platform.We conduct our client experiments on
PC with Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz 3.19
GHz, 16GB memory and Windows 10 operating system and
iPhone 11, a mobile phone with 4GB RAM, 128GB ROM,
and IOS14.5. In addition, the server runs on node v14.15.5
with a quad-core virtual machine @3.2GHz (installed
Ubuntu Server 18.04 with 16GB memory and 128GB disk).
To simulate actual network status, we tune the representa-
tive bandwidth to be 10Mbps, 50Mbps,100Mbps, 1Gbps,
and RTT to be 30ms.

Performance Metrics. We evaluate delta sync approaches
in terms of two main metrics: sync time and sync traffic.
The sync time metric refers to the time spent on the sync
process. The sync traffic metric measures the total amount
of data transmitted, including Checksum List, Match Token,
and Delta Bytes, as discussed in Section 4 (shown in Figs. 6
and 9). For each data point reported in this section, unless
specially explained, we run the experiment five times to
obtain a statistically meaningful average measurement for
the sync performance.

Delta Sync Configurations.We build our NetSync on top of
the state-of-the-art rsync-based WebR2sync+ [9]. In Dsync
(an intermediate version of NetSync in which the network
adaptive modules are not included), we enable the deflate

compressor and use 8KB as the default avg. chunk size, as
recommended inWebR2sync+ [9] and LBFS [15]. InNetSync,
unless specially explained, the Chunking Selector sets a
proper avg. chunk size according to the current network
bandwidth (as discussed in Subsection 4.4, 512B, 1KB, and
2KB for network bandwidths ð0; 10Þ, [10,40), and ½40;þ1Þ

(Mbps) respectively). The default jumping bits L is set to 16
in FastFP(+L). In the evaluation, all experimental conditions
are the same unless otherwise explained.

Benchmark Dataset. Silesia [39] is a widely acknowledged
dataset for data compression [40] covering typical data types
that are commonly used, including text, executables, pic-
tures, HTML, etc. According to several published studies on
real-world and benchmark datasets [41], [24], the file modifi-
cations are made at the beginning, middle, and end of a file
with a distribution of 70%, 10%, and 20%, respectively [41].
Similar to the operations in WebR2sync+ [9] and QuickSync
[29], modifications in the forms of “cut”, “insert”, and
“inverse” are also made on the original data, where
“inverse” represents flipping the binary data (e.g., inversing
10111001 to 01000110). To generate the benchmark datasets,
we cut 10MB out of the Silesia corpus and modified the file
with the modification size of 32B, 256B, 2KB, 16KB, 128KB,
and 1MB respectively. Three types of file modifications are
made following the pattern described above, and each frac-
tion for the file modifications takes 256B atmost.

Real-World Datasets. In addition to the synthesized data-
sets, we use the following four real-world datasets to evalu-
ate the delta sync approaches:

� PPT. We collect 48 versions of a PowerPoint docu-
ment from personal uses in the cloud storage (total-
ing 467MB).

� GLib. We collect the GLib source code from versions
2.4.0 through 2.9.5 sequentially. The codes are tarred,
and each version is about 20MB, totaling 860 MB.

� Pictures. We use a public picture manipulation data-
set [42], which contains 48 pictures in “PNG” format
(totaling 280 MB) with no lossy compression, and
the manipulation pattern is to paste a certain area of
a photo in another place.

� Mails. We collect some mails from a public mail
dataset [43], and each mail contains past replies. The
mails are tarred with two versions by time, and the
total size is about 1839 MB.

The Baseline Sync Performance. As discussed in Section 1,
sync performance (sync latency) is considered the most crit-
ical factor for cloud storage services. Rsync is a classic delta
sync approach. However, as shown in Fig. 10, it has been
far exceeded by the state-of-the-art Web-based delta sync
WebR2sync+ [9], which is an improved delta sync approach
based on WebRsync (i.e., one kind of rsync [27] approach
implemented onWeb browser for better platform adaptabil-
ity). To make our evaluation more straightforward, we use
WebR2sync+ rather than WebRsync (Web-based rsync) for
sync performance comparison in the following experiments.

5.2 Performance of the Weak Hash Implementation

In this subsection, we evaluate the performance of all our
weak hash derivatives. Hashing efficiency and uniformity
of hash value distribution are the two most important met-
rics that are the main concern. To evaluate the hash collision
rate, we first generate a dataset with 30 files consisting of
random numbers for the given size of 1GB, 10GB, and
100GB (10 files each). To make the evaluations rigorous, we
execute each experiment 10 times and average the results.

XIA ET AL.: NETSYNC: A NETWORK ADAPTIVE AND DEDUPLICATION-INSPIRED DELTA SYNCHRONIZATION APPROACH FOR CLOUD... 2563

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

Hashing Throughput. The averaged throughputs of the
hash functions with different configurations are shown in
Table 2. LastFP has the highest throughput because it is
generated directly from the CDC process with no extra
overhead introduced. However, our later evaluation
(Fig. 11) shows that it is unqualified to be a weak finger-
print for its extremely high collision rate. As shown in
Table 2, FastFP(+16) has a much lower throughput than
LastFP because it introduces extra computing overhead to
obtain a lower collision ratio. More importantly, FastFP
has a better hashing efficiency than Adler32, i.e., replacing
Adler32 with FastFP can help offset the additional comput-
ing overhead brought by CDC. In general, FastFP works
well in terms of the hashing efficiency, and it will show a
greater advantage in later evaluation (uniformity of hash
value distribution).

Uniformity of Hash Value Distribution. Fig. 11 shows the
uniformity of all hash function derivatives. Generally
speaking, to avoid hash collisions, a hash function should
map the data to any probable hash value with an equivalent
chance. Therefore, the uniformity of hash function is evalu-
ated via the chi-square-goodness-fit test [44], a widely used
method to justify whether the hash value distribution is sig-
nificantly different from a uniform distribution. The main
idea of this test is to hypothesize that the hash value distri-
bution is uniform and calculate a test statistic x2 to indicate
how much it has diverged from the expected distribution.
Equation (6) indicates that the probability of a x2 larger than
x2
aðnÞ is a (knows as the confidence level, normally as low

as 1% to 5%). Moreover, if we get a large x2, the hypothesis
is overthrown. Note that a higher confidence level means
stricter constraints over the hypothesis, e.g., 10% confidence
level is more convincing than 5%.

Pfx2 > x2
aðnÞg ¼ a (6)

In our case, we first divide the weak hash value range R
into b bins, each bin containing R=b values. Then we traverse
weak hash values of all chunks and count the numbers of val-
ues that lie in the intervals of bins respectively (½0; R=b� 1�,
½R=b; 2R=b� 1�; ½2R=b; 3R=b� 1�, ...). After that, we calculate
the statistic chi-square value of our sample group, shown in
Equation (7), and look up the chi-square distribution table to
determine the confidence level. For example, if we divide 8-
bits hash values into 4 bins and the numbers of chunks (100
chunks in total) that fall into the bins (½0x00; 0x3F �, ½0x40;
0x7F �, ½0x80; 0xBF �, ½0xC0; 0xFF �) are 20; 25; 29; 26, then b is
equal to 4 and n1 through n4 are 20; 25; 29; 26. Furthermore,
the expected number of chunks �n in the perfectly uniform
hash value bins should be 100=4 ¼ 25. As we get a statistic x2

value of 1.68, we could refer to the chi-square distribution
table and get the critical value for the 10% confidence level is
6.25 and that for the 90% is 0.58. It means our hypothesis is
accepted with the 10% confidence level but rejected with a
90% confidence level. If another hash function, gðxÞ, is
acceptedwith a 90% confidence level, gðxÞ ismore uniform.

x2 ¼
Xb

i¼1

ðni � nÞ2
n

(7)

To be more specific, our 32-bit hash function (from 0 to
232 � 1) range is divided into 1024 bins, and we compare
SHA-1 hash values of chunks to check if two chunks are
identical. The hypothesis test results shown in Fig. 11 indi-
cate that LastFP is always rejected; FastFP(+16) can be
accepted with the 1% confidence level; in contrast, both
Adler32 and FastFP can be accepted with the 10% confi-
dence level. As concluded in Subsection 4.2, LastFP is only
relevant to the contents within 32 Bytes from the cut point.
Because of its limited coverage, LastFP is unacceptable, and
inversely with more data included in the hash function,
FastFP achieves better uniformity than FastFP(+16).

In summary, evaluation results suggest that our pro-
posed FastFP is much faster but no weaker than the widely
acknowledged Adler32 (used in rsync).

5.3 Performance of the Redesigned Protocol

In this subsection, we evaluate the performance of our rede-
signed communication protocol which aims to minimize
the time-consuming strong hash computation and reduce
the amount of metadata transmitted over the network.

Fig. 10. A glance at sync performance on one of our benchmark dataset
(inverse modification). Note that the network bandwidth is 100Mbps;
WebRsync (Web-based rsync) is the rsync approach implemented
on the Web browser.

TABLE 2
The Throughput of Four Hash Algorithms

chunk size Hash throughput(MBps)

LastFP Adler32 FastFP(+16) FastFP

512B 471 301 266 334
2KB 559 313 253 343
8KB 623 314 313 368
32KB 664 304 295 355

Fig. 11. The Chi-Square uniformity test. Note that the horizontal axis rep-
resents different chunk sizes. Here 1%, 2.5%, 5%, and 10% stand for dif-
ferent confidence levels of the Chi-Square-goodness-fit test.

2564 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 12 shows the ratio of total traffic (without compres-
sion) over the network after/before applying our NetSync
protocol that merges consecutive weak-hash-matched
chunks. When the modification is light (e.g., inserting 32
bytes or inversing 256 bytes, etc.), the sync traffic will be
reduced by 70%–80% in NetSync. As modification granular-
ity grows, the ratio approaches 100%. As modification size
increases, the traffic is gradually dominated by Delta Bytes
rather than metadata since few, if any, weak-hash-matched
chunks will be found. Specifically, when synchronizing a
10MB file with the average chunk size set to 8KB, the trans-
mission of almost 1280 chunks’ SHA-1 values, i.e., totaling
25KB of metadata, will be eliminated by the redesigned pro-
tocol. However, the reduced metadata will be far overshad-
owed by the much larger amount of Delta Bytes transmitted
from client to server if too many modifications are made to
the file.

Fig. 13 depicts the numbers of hash comparing operations
in NetSync and WebR2sync+, including both strong and

weak hash. We can conclude that owing to the strategy of
merging consecutive weak-hash-matched chunks into one
chunk, NetSync has much fewer operations for comparing
weak and strong hashes than WebR2sync+. To a certain
extent, the occurrence of strong hash comparison operations
for each synchronization represents the number of matched
chunks. Themore strong-hash comparisons are executed, the
more matched chunks we find (compared within the same
sync process). Especially, when the modification size is 1MB,
NetSync adopts the merge strategy, but it still has a higher
frequency of strong hash comparison than WebR2sync+.
That is because it is hard forWebR2sync+ to find unmodified
chunks under a coarser modification granularity since the
distance between two modifications is almost 8KB. In con-
trast, NetSync can find matched chunks smaller than 8KB
(the chunk sizes are variable by CDC), as stated in Section 3.
Therefore, we can also conclude that NetSync gets the lead in
finding more duplicate chunks by introducing FastCDC,
especially under a coarsermodification granularity.

Then we evaluate the sync time of WebR2sync+, Dsync,
and NetSync as a function of modification granularity on
client under three different network bandwidths, as shown
in Fig. 14. The sync time on client, as depicted in Fig. 9,
which is mainly composed of generating Checksum List,
finding delta bytes, and compressing + decompressing
time, can represent the computing overhead and resource
occupation of client during the sync. Significantly, the
patchdoc compression time occupies a large proportion of
client time when the modification granularity is coarser in
Dsync and WebR2sync+, where the default compressor is
set to deflate. When the modification is light (e.g., less than
2KB), NetSync performs better than WebR2sync+ because it
employs the FastFP, which helps compensate for the chunk-
ing overhead, and the improved protocol, which reduces
the strong hash computation of client. When granularity is

Fig. 12. Total traffic ratio as a function of modification size, after/before
applying the NetSync protocol that merges consecutive weak-hash-
matched chunks.

Fig. 13. Numbers of hash-comparing operations of NetSync and WebR2Sync+, including both strong and weak hashes. Note: the “SH” (solid lines)
and “WH” (dotted lines) stand for the strong and weak hash comparing operation frequencies, respectively; the network adaptive modules are not
included in NetSync here.

Fig. 14. Client time comparison of NetSync, Dsync, and WebR2sync+ under different network bandwidths.

XIA ET AL.: NETSYNC: A NETWORK ADAPTIVE AND DEDUPLICATION-INSPIRED DELTA SYNCHRONIZATION APPROACH FOR CLOUD... 2565

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

coarser (e.g., 1MB for 10MB file), the ability for FastCDC to
discover more duplication reduces the traffic volume and
thus reduces the compression time, which finally helps
reduce client time. When the network condition is limited,
NetSync employs the same compressor as Dsync and thus
has the same performance. However, when the network
bandwidth is sufficiently high, NetSync employs none or
lz4 instead, which leads to better performance. Therefore,
with its improvements, NetSync outperforms WebR2sync+
on client under various network bandwidths and different
modification granularity.

5.4 Performance of Network Adaptive Modules

In this subsection, we briefly evaluate the performance of
the network adaptive compression and network adaptive
chunking in NetSync.

5.4.1 Performance of Network Adaptive Compression

To make a good comparison, we test WebR2sync+ with the
compression method of none and deflate, and Dsync with
the compression of none, lz4, and deflate, respectively.
As shown in Fig. 15, we take three sync groups with differ-
ent network bandwidths under the inverse-modification
benchmark datasets.

As illustrated in Fig. 15, the network conditions can
greatly affect the transmission time, and the optimal com-
pressor differs under different network conditions (e.g.,
deflate for 10Mbps while lz4 for 50Mbps, etc.), and Net-
Sync with the Compression Selector shows a great
advantage among the three sync methods. It performs 1–
2:19� faster than WebR2sync+ and 1–1:57� faster than
Dsync. When the network bandwidth is limited, NetSync
performs the same as Dsync and sometimes even worse.
When the network conditions are better, NetSync
completely outpaces its rivals, and the better the network
condition is, the better NetSync performs. Modification
granularity also has a crucial impact on sync performance.
With a coarser granularity, the number of delta Bytes trans-
mitted in the network will be larger, so NetSync performs
better.

NetSync cannot always choose the best compressor (e.g.,
in Fig. 15a, when the inverse size is 128KB, NetSync chooses
a sub-optimal compressor) for there may be a gap between
the real characteristics and the estimators. However, just as
Fig. 15 illustrates, generally, the gap has little impact, so
even if the optimal one is not selected, it is likely to choose
the sub-optimal solution that is also appropriate for the cur-
rent synchronization.

5.4.2 Performance of Network Adaptive Chunking

The network adaptive chunking method aims at finding
appropriate chunk sizes for different network conditions to
minimize the sync time. We evaluate the network adaptive
chunking performance by comparing sync efficacy with the
non-adaptive edition, Dsync, in terms of the total sync time,
because the chunking granularity is closely coupled with
every stage and cannot be stripped off for sole evaluation.
We keep the compressor invariant (deflate) to eliminate
the influence of using different compressors.

Fig. 16 shows the normalized sync performance corre-
sponding to different chunk sizes under different network
bandwidths. Note that we set the best sync time to zero and
the worst to one (normalization), in other words, the lowest
point of each polyline (the point with zero ordinate) repre-
sents the best chunk size for the current network. As shown in
Fig. 16, different network bandwidths correspond to different
optimal chunk sizes. Generally, the higher the network band-
width is, the greater the optimal chunk size will be. More pre-
cisely, we can get a general rule for Chunking Selector

according to Fig. 16: use the optimal chunk sizes of 512B,
1KB, and 2KB for network bandwidths ð0; 10Þ, [10,40), and
½40;þ1Þ (Mbps) respectively (note that we have tested large
quantities of network bandwidths; only the results near the
critical optimal chunk sizes are shown in Fig. 16). Especially,
the default chunk size (8KB) recommended by LBFS [15] and
some other rsync-based approaches [9], [38] is overthrown
by Fig. 16. Besides, the gap between the optimal and sub-opti-
mal chunk sizes is minor. That is to say, if Chunking Selec-

tor cannot precisely set the optimal chunk size, it is likely to

Fig. 15. The sync time of NetSync compared withWebR2sync+ using none and deflate, and Dsync using none, lz4, and deflate under three differ-
ent network bandwidths. Note: WebR2sync+_n and WebR2sync+_d represent WebR2sync+ using none and deflate compression respectively;
Dsync_n, Dsync_l, Dsync_d represent Dsync using none, lz4 and deflate, respectively; and Chunking Selector is not included in NetSync here.

Fig. 16. Normalized sync performance corresponding to different chunk
sizes under different network bandwidths. Note that we set the best sync
time to zero and the worst to one (normalization), in other words, the low-
est point of each polyline (the point with zero ordinate) represents the
best chunk size for the current network.

2566 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

set a sub-optimal chunk size which is also appropriate. Note
that Fig. 16 is conducted on one of our benchmark datasets
(inverse), and it has similar results on other (both benchmark
and real-world) datasets.

As shown in Fig. 17, the performance of network adaptive
chunking indicates two points. First, the network adaptive
chunking performs better when modification granularity is
coarse, while it is nearly the samewhenmodification is insig-
nificant. It is because the default chunking size of Dsync is
already fine enough, and finer granularity is not much of an
improvement, not to mention the extra metadata and com-
puting overhead. If themodification is significant, finer gran-
ularity can help find more redundancy, thus saving the
computing and network overhead. Second, the improve-
ment is more significant when the network bandwidth is
higher. Even though chunking size influences the perfor-
mance of every stage, it is proposed mainly to reduce net-
work traffic. As the bandwidth improves, the proportion of
network transmission is decreased, and the significance of
transmission reduction declines accordingly.

5.5 Put It All Together

In this subsection, we evaluate the overall performance of
NetSync, including the sync time breakdown, sync time on
client, and the capacity of supporting multiple clients, etc.

We first evaluate the sync time breakdown of NetSync
compared with WebR2sync+ and Dsync. Results are shown
in Fig. 18. Compared with WebR2sync+, NetSync and
Dsync tend to have a lower client and server time which
makes Dsync and NetSync consistently outperform WebR2-
sync+. NetSync tends to have almost the same sync time as
Dsync under limited network conditions (i.e., 10Mbps).
When the network bandwidth is sufficiently high (i.e.,
50Mbps or 100Mbps), NetSync shows better performance

by selecting lz4 or none as its compressor to reduce the
compressing and decompressing time. At this time, the net-
work transmission time slightly increases, while client time
is greatly reduced, resulting in the reduction of the overall
sync time. Modification size also plays a key role in the sync
performance. When it is light (e.g., less than 2KB), chunking
and hashing time account for most sync time. In this case,
NetSync/Dsync performs better than WebR2sync+ for
using FastFP. As the modification size increases, the posi-
tive effect of the network adaptive chunking begins to
show, and NetSync’s advantage over WebR2sync+ and
Dsync becomes pronounced, especially when the network
bandwidth is sufficiently high.

We also evaluate the scalability of WebR2sync+, Dsync,
andNetSync in terms of the ability to support multiple clients
simultaneously. The main indicator of our concern is the CPU
utility which can reflect the calculating capacity of clients dur-
ing the synchronization to a certain extent, as shown in
Fig. 19. In this evaluation, we run the experiment 5 times and
get the average values.We also list the statistical error bounds
in all subfigures of Fig. 19. Be aware that the lower the CPU
utility, the more scalable and capable for sync approaches to
support multi-clients in this evaluation. Fig. 19 indicates that
NetSync has the lowest overall CPU utility among all tree
sync approaches. That is to say, NetSync is the most scalable
sync approach. In other words, when a PC can only support
220 clients of WebR2sync+ at most, it can support 300 Dsync
clients or nearly 400NetSync clients.

Finally, we run our tests on four real-world datasets. In
this evaluation, we conduct our tests ofWebR2sync+, Dsync,
and NetSync on PC (Windows) and mobile phone (IOS), as
shown in Table 3. On Windows, NetSync is 1:78�–5:26�
faster than WebR2sync+ (Dsync is 1:5�–3:3� faster than
WebR2sync+). On IOS, the trend is similar to that of

Fig. 17. The overall sync time of NetSync with Chunking Selector compared with Dsync under three different modification granularities. Note: the
network adaptive Compression Selector is not included in NetSync here, and the y-axis scales of the three subfigures are different.

Fig. 18. Sync time breakdown comparison of NetSync, Dsync, and WebR2sync+ as a function of modification sized under different network band-
widths. Note: “N” represents NetSync, “D” represents Dsync, and “W” represents WebR2sync+, respectively.

XIA ET AL.: NETSYNC: A NETWORK ADAPTIVE AND DEDUPLICATION-INSPIRED DELTA SYNCHRONIZATION APPROACH FOR CLOUD... 2567

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

Windows. Moreover, the results indicate that as lightweight
delta sync, NetSync performs well on the mobile platform,
with less storage and computational resources.

5.6 High Bandwidth and Large Files

This subsection evaluate NetSync performance on large files
under the Gigabit network environment, as shown in
Fig. 20. As mentioned earlier, the chunk-matching process
is very time-consuming in the rsync-based approaches.
The results shown in Fig. 20 suggest that rsync-based
WebR2sync+ spends 2�–10� more sync time compared
with NetSync. This is because WebR2sync+ spends too
much time on the process of byte-by-byte chunk matching
on large files while the time spent on the network has been
reduced by using a high-bandwidth environment. Due to
the design of network adaptive modules, NetSync has
reduced the sync time by 1:25�–1:4� when comparing with
Dsync and 3�–10� compared with WebR2sync+.

6 CONCLUSION

The traditional rsync-based approaches introduce heavy
computing overhead in the chunk-matching process for

cloud storage services. CDC-based deduplication simplifies
the chunk-matching process, while it brings new challenges
of additional chunking overhead and low redundancy detec-
tion ratio. At the same time, current sync approaches are not
aware of the challenges brought by different network condi-
tions. This paper proposes NetSync, a network adaptive
deduplication-inspired lightweight delta sync approach for
cloud storage services, to address the above challenges facing
combining the CDC technique with the traditional rsync-
based approaches. The critical contributions of NetSync are:
(1) Developing a fast, weak hash called FastFP by piggyback-
ing on hashes generated from the chunking process of
FastCDC; (2) Redesigning the delta sync protocol by exploit-
ing deduplication locality and weak/strong hash properties,
which makes CDC simplify the delta sync process for cloud
storage services, especially for large file synchronization and
high-bandwidth environment; (3) Proposing a network adap-
tive design to automatically choose appropriate compressors
and CDC parameters to minimize the sync time. Evaluation
results, driven by benchmark and real-world datasets, dem-
onstrate that our solution NetSync performs 2�–10� faster
and scales to 30%–50%more concurrent clients than the state-
of-the-art approaches.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their
insightful comments and feedback on this work. We also
appreciate Lingfeng Xiang, Yuan He, and Junwei Xu for
their discussion and technical support. The preliminary
manuscript appeared in the proceedings of IEEE MSST
2020. In this journal version, we introduced more techni-
ques to further improve delta sync performance and
included additional measurement results from our analysis
and testbed experiments.

TABLE 3
Sync Performance of the Three Approaches on Both Windows / IOS Clients on Four Real-World Datasets

100Mbps Sync time(s)
(Windows/IOS)

50Mbps Sync time(s)
(Windows/IOS)

10Mbps Sync time(s)
(Windows/IOS)

Datasets NetSync Dsync WebR2sync+ NetSync Dsync WebR2sync+ NetSync Dsync WebR2sync+

Pictures 14.2/18.0 19.6/38.1 25.0/41.3 16.6/24.2 28.5/34.5 37.1/53.4 87.6/108.5 94.0/107.8 102.3/112.6
PPT 7.2/9.4 8.7/13.7 12.2/16.9 9.8/13.6 11.9/18.8 15.0/22.6 30.3/33.4 30.5/36.5 40.7/48.3
Mail 29.9/34.9 37.3/54.6 98.2/125.3 41.9/44.3 46.4/63.4 81.5/84.9 83.5/101.0 97.2/104.9 411.5/440.2
GLib 33.9/37.8 49.3/63.2 119.2/149.4 42.8/46.8 57.4/73.6 164.2/193.4 104.7/121.6 109.8/135.2 482.3/518.1

Note that Windows / IOS platforms have the same sync traffic under the same network bandwidths, they only differ in the computing capacity.

Fig. 20. Sync time of the three sync approaches for the large files (1GB)
under the high-bandwidth environment (1Gbps).

Fig. 19. Multi-Clients comparison of NetSync, Dsync, and WebR2sync+ on a single VM server instance.

2568 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Dropbox, INC., “Dropbox,” 2014. Accessed: Apr. 04, 2019.
[Online]. Available: https://www.dropbox.com/

[2] Google, INC., “Google drive,” 2019. Accessed: Apr. 04, 2019.
[Online]. Available: https://www.google.com/drive/

[3] Apple, INC., “iCloud,” 2019. Accessed: Apr. 04, 2019. [Online].
Available: https://www.icloud.com/

[4] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras,
“Benchmarking personal cloud storage,” in Proc. Conf. Internet Meas.
Conf., 2013, pp. 205–212.

[5] Z. Li et al., “Towards network-level efficiency for cloud storage
services,” in Proc. Conf. Internet Meas. Conf., 2014, pp. 115–128.

[6] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, and
A. Pras, “Inside Dropbox: Understanding personal cloud storage
services,” in Proc. Conf. Internet meas. Conf., 2012, pp. 481–494.

[7] Q. Zhang et al., “DeltaCFS: Boosting delta sync for cloud storage
services by learning from NFS,” in Proc. IEEE 37th Int. Conf. Dis-
trib. Comput. Syst., 2017, pp. 264–275.

[8] S. Wu, L. Liu, H. Jiang, H. Che, and B. Mao, “PandaSync: Network
and workload aware hybrid cloud sync optimization,” in Proc.
IEEE 37th Int. Conf. Distrib. Comput. Syst., 2019, pp. 282–292.

[9] H. Xiao, Z. Li, E. Zhai et al., “Towards web-based delta synchroni-
zation for cloud storage services,” in Proc. 16th USENIX Conf. File
Storage Technol., 2018, pp. 155–168.

[10] I. Mohiuddin et al., “Secure distributed adaptive bin packing algo-
rithm for cloud storage,” Future Gener. Comput. Syst., vol. 90,
pp. 307–316, 2019.

[11] Y. He et al., “Dsync: A lightweight delta synchronization approach
for cloud storage services,” in Proc. 35th Symp. Mass Storage Syst.
Technol., 2020, pp. 1–14.

[12] M. Abebe, K. Daudjee, B. Glasbergen, and Y. Tian, “EC-store:
Bridging the gap between storage and latency in distributed era-
sure coded systems,” in Proc. IEEE 37th Int. Conf. Distrib. Comput.
Syst., 2018, pp. 255–266.

[13] A. K. Singh, X. Cui, B. Cassell, B. Wong and K. Daudjee,
“MicroFuge: A middleware approach to providing performance
isolation in cloud storage systems,” in Proc. IEEE 37th Int. Conf.
Distrib. Comput. Syst., 2014, pp. 503–513.

[14] W.Xia et al., “A comprehensive studyof the past, present, and future
of data deduplication,” Proc. IEEE, vol. 104, no. 9, pp. 1681–1710,
Sep. 2016.

[15] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” in Proc. 18th ACM Symp. Oper. Syst. Princ.,
2001, pp. 174–187.

[16] W. Xia et al., “FastCDC: A fast and efficient content-defined
chunking approach for data deduplication,” in Proc. USENIX
Conf. USENIX Annu. Tech. Conf., 2016, pp. 101–114.

[17] J. W. Hunt and M. D. MacIlroy, An Algorithm for Differential File
Comparison. New York, NY, USA: Murray Hill, 1976.

[18] D. G. Korn and K.-P. Vo, “Engineering a differencing and com-
pression data format,” in Proc. Gen. Track Annu. Conf. USENIX
Annu. Tech. Conf., 2002, pp. 219–228.

[19] B. C. Housel and D. B. Lindquist, “WebExpress: A system for opti-
mizing web browsing in a wireless environment,” in Proc. 2nd
Annu. Int. Conf. Mobile Comput. Netw., 1996, pp. 108–116.

[20] A. Tridgell et al., “The rsync algorithm,” 1996, [Online]. Available:
https://rsync.samba.org/tech report/tech report.htm

[21] D. Teodosiu, N. Bjørner, Y. Gurevich, M. Manasse, and J. Porkka,
“Optimizing file replication over limited-bandwidth networks
using remote differential compression,”Microsoft Res., 2006.

[22] J. MacDonald, “File system support for delta compression,” Ph.D.
dissertation, Citeseer, Princeton, NJ, USA, 2000.

[23] D. Trendafilov, N. Memon, and T. Suel, “zdelta: An efficient delta
compression tool,” Citeseer, pp. 1–16, 2002.

[24] W. Xia, H. Jiang, D. Feng, L. Tian, M. Fu, and Y. Zhou, “Ddelta: A
deduplication-inspired fast delta compression approach,” Per-
form. Eval., vol. 79, pp. 258–272, 2014.

[25] Y. Cui, Z. Lai, X. Wang, and N. Dai, “QuickSync: Improving syn-
chronization efficiency for mobile cloud storage services,” IEEE
Trans. Mobile Comput., vol. 16, no. 12, pp. 3513–3526, Dec. 2017.

[26] Seafile, INC., “Seafile: Enterprise file sync and share platform with
high reliability and performance.” Accessed: May 18, 2019.
[Online]. Available: https://www.seafile.com/en/home

[27] T. Andrew et al., “rsync.” Accessed: Aug. 01, 2019. [Online]. Avail-
able: https://rsync.samba.org/

[28] Z. Li et al., “Efficient batched synchronization in dropbox-like cloud
storage services,” in Proc. ACM/IFIP/USENIX Int. Conf. Distrib. Syst.
PlatformsOpenDistrib. Process. Middleware, 2013, pp. 307–327.

[29] Y. Cui, Z. Lai, X. Wang, and N. Dai, “QuickSync: Improving syn-
chronization efficiency for mobile cloud storage services,” IEEE
Trans. Mobile Comput., vol. 16, no. 12, pp. 3513–3526, Dec. 2017.

[30] A. Tridgell, “Efficient algorithms for sorting and synchronization,”
Australian Nat. Univ., pp. 1–115, 1999.

[31] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-match-
ing algorithms,” IBM J. Res. Develop., vol. 31, no. 2, pp. 249–260, 1987.

[32] F. Zhang, J. Zhai, X. Shen, O. Mutlu and X. Du, “POCLib: A high-
performance framework for enabling near orthogonal processing
on compression,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 2,
pp. 459–475, Feb. 2022.

[33] R. E. Bryant, O. David Richard, and O. David Richard, Computer
Systems: A Programmer’s Perspective. Englewood Cliffs, NJ, USA:
Prentice Hall, 2003.

[34] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication file system,” in Proc. 6th USE-
NIX Conf. File Storage Technol., 2008, pp. 1–14.

[35] “Librespeed-speedtest,” 2019. [Online]. Available: https://
librespeed.org/

[36] D. Woolston, “The xmlhttprequest object,” Pro Ajax and the. NET
2.0 Platform, pp. 41–64, 2006.

[37] T. Yoshino, “Compression extensions for websocket,” Internet
Eng. Task Force Request Comments, vol. 7692, pp. 2070–1721, 2015.

[38] H. Xiao, Z. Li, E. Zhai et al., “Practical web-based delta synchroni-
zation for cloud storage services,” in HotStorage 17, 2017.

[39] S. Deorowicz, “Silesia corpus,” [Online]. Available: https://bit.
ly/2xN3hgZ/

[40] S. Deorowicz, “Universal lossless data compression algorithms,”
Philosophy Diss. Thesis Gliwice, 2003, Art. no. 38.

[41] V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuenning, and
E. Zadok, “Generating realistic datasets for deduplication analy-
sis,” in Proc. USENIX Conf. Annu. Tech. Conf., 2012, Art. no. 24.

[42] V. Christlein, C. Riess, J. Jordan, C. Riess and E. Angelopoulou, “An
evaluation of popular copy-move forgery detection approaches,”
IEEE Trans. Inf. Forensics Secur., vol. 7, no. 6, pp. 1841–1854,
Dec. 2012.

[43] Enron mail dataset. [Online]. Available: https://bitly.com/
2XSUbu2/

[44] C. Henke, C. Schmoll, and T. Zseby, “Empirical evaluation of hash
functions for packetid generation in sampled multipoint meas-
urements,” in Proc. Int. Conf. Passive Act. Netw. Meas., 2009,
pp. 197–206.

WenXia (Member, IEEE) received thePhDdegree
in computer science from the Huazhong University
of Science and Technology (HUST), Wuhan,
China, in 2014. He is currently an associate profes-
sorwith the School of Computer Science and Tech-
nology, Harbin Institute of Technology, Shenzhen,
China. His research interests include data reduc-
tion, storage systems, and cloud storage. He has
published more than 60 papers in major journals
and conferences, including IEEE Transactions on
Parallel and Distributed Systems, IEEE Transac-

tions on Computers, Proceedings of the IEEE, USENIX ATC, FAST, Hot
Storage, MSST, DCC, IPDPS, INFOCOM, ICDCS, etc.

Can Wei received BS degree in computer science
from the Harbin Institute of Technology, Weihai,
China, in 2020. He is currently working toward
the MS degree with the Department of Computer
Science and Technology, Harbin Institute of Tech-
nology, Shenzhen, China. His research interests
include data sync, cloud storage and cloud
computing.

XIA ET AL.: NETSYNC: A NETWORK ADAPTIVE AND DEDUPLICATION-INSPIRED DELTA SYNCHRONIZATION APPROACH FOR CLOUD... 2569

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

https://www.dropbox.com/
https://www.google.com/drive/
https://www.icloud.com/
https://rsync.samba.org/tech report/tech report.htm
https://www.seafile.com/en/home
https://rsync.samba.org/
https://librespeed.org/
https://librespeed.org/
https://bit.ly/2xN3hgZ/
https://bit.ly/2xN3hgZ/
https://bitly.com/2XSUbu2/
https://bitly.com/2XSUbu2/

Zhenhua Li (Member, IEEE) received the BS and
MS degrees in computer science and technology,
from Nanjing University, Nanjing, China, in 2005
and 2008, respectively, and the PhD degree from
Peking University, Beijing, China, in 2013. He is
currently an associate professor with the School
of Software and BNRist, Tsinghua University. His
research interests include cloud computing/stor-
age/ download, big data analysis, content distribu-
tion, andmobile internet.

XuanWang received the PhD degree in computer
sciences from the Harbin Institute of Technology,
Harbin, China, in 1997. He is currently a professor
and dean with the School of Computer Science
and Technology, The Harbin Institute of Technol-
ogy, Shenzhen, China. His research interests
include artificial intelligence, computer network
security, computational linguistics, and computer
vision. He has published more than 120 academic
papers inmajor journals and conferences.

Xiangyu Zou is currently working toward the
PhD degree majoring in computer science with
the Harbin Institute of Technology, Shenzhen,
China. His research interests include data dedu-
plication, lossy compression and storage sys-
tems. He has published several papers in major
journals and conferences including FAST, ICDE,
IEEE Transactions on Parallel and Distributed
Systems, ICPP, Cluster, MSST, HotEdge, etc.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2570 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 06,2022 at 09:20:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

