
UFC2: User-Friendly Collaborative Cloud
Minghao Zhao , Student Member, IEEE, Zhenhua Li , Senior Member, IEEE, Wei Liu,

Jian Chen, and Xingyao Li

Abstract—This article studies how today’s cloud storage services support collaborative file editing. As a tradeoff for transparency and user-

friendliness, they do not ask collaborators to use version control systems but instead implement their own heuristics for handling conflicts,

which however often lead to unexpected and undesired experiences.With specializedmeasurements and reverse engineering, we unravel

a number of their design and implementation issuesas the root causes of poor experiences. Driven by the findings, we propose to reconsider

the collaboration support of cloud storage services from a novel perspective of operationswithout using any locks. To enable this idea, we

design intelligent and efficient approaches to the inference and transformation of users’ editing operations, aswell as optimizations to the

maintenance of files’ historical versions and the update of individual files.We build an open-source systemUFC2 (User-Friendly

Collaborative Cloud) to embody our design, which can avoidmost (98%) conflicts with little (2%) overhead.

Index Terms—Cloud storage, collaborative editing, conflict resolution, operation inference, operation transformation

Ç

1 INTRODUCTION

THE functionality of cloud storage services, such as Drop-
box, OneDrive, Google Drive, and iCloud Drive, has

evolved from simple file backup to online collaboration. For
example, over 300,000 teams have adopted Dropbox for
business collaboration. These users submit �4000 file edits
to Dropbox per second [16]. For the ease of use, file collabo-
ration is made transparent by almost every cloud storage
service today through automatic file synchronization. When
a user modifies a file in a “sync folder” (a local directory cre-
ated by the service), the changed file will be automatically
synchronized with the copy maintained at the cloud side.
Then, the cloud server(s) will further distribute the new ver-
sion of the file to the other users sharing the file.

Collaboration inevitably introduces write-write conflicts1 –
simultaneous edits on two different copies of the same file.
However, it is non-trivial to automatically resolve conflicts,
especially if the conflicting edits are on the same line of the
file. Version Control Systems (VCSes) such as Git and SVN,
for instance, provide instructions to find and merge concur-
rent edits at the line level. Changes on the same or adjacent
lines will be marked as conflicts (e.g., Git flags concurrent

edits on two continuous lines as conflicts [48]), which are
then left to users for manual handling [55]. Nevertheless,
VCSes are known to be difficult for non-technical users [62].
Even for computer professionals, solving conflicts in VCSes
is somewhat miserable [24], [28], [41], [60].

Instead, today’s cloud storage services all opt for trans-
parency and user-friendliness – they devise different
approaches to preventing conflicts or automatically resolv-
ing conflicts. Unfortunately, these efforts do not work well
in practice, often resulting in unexpected results. Table 1
describes the major common patterns of unexpected and
undesirable collaborative experiences. To debug these pat-
terns from the inside out, we study eight widely-used cloud
storage services (including Dropbox, OneDrive, Google
Drive, iCloud Drive, Box [2], SugarSync [17], Seafile [12],
and Nutstore [8]) based on traffic analysis with trace-driven
and strategically devised experiments, as well as reverse
engineering. We collect ten real-world collaboration traces,
among which seven come from the users of different serv-
ices and the other three are from the contributors of well-
known projects hosted by Github. Our study results reveal
a number of design issues with regard to collaboration sup-
port in the eight services. In particular, we find that:

� Using file-level locks to prevent conflicts is difficult
due to the unpredictability of users’ editing behavior
(as cloud storage services can neither designate nor
monitor the editor) and the latency between clients
and the server.

� Existing conflict-resolution solutions are too coarse-
grained and do not consider user intention – they
either keep the latest version based on the server-
side timestamp or distribute all the conflicting ver-
sions to the users.

Most surprisingly, we observe that the majority of
“conflicts” reported by these cloud storage services are not
true conflicts but are artificially created. In those false-positive
conflicts (or false conflicts), the collaborators were editing dif-
ferent parts of a shared file. This is echoed by the common

� The authors are with the School of Software and BNRist, Tsinghua Univer-
sity, Beijing 100190, China. E-mail: {zhaominghao.thu, lizhenhua1983,
liuwei199803, chenjian1995.thu, lixingyao816}@gmail.com.

Manuscript received 14 Feb. 2021; revised 13 Nov. 2021; accepted 28 Nov. 2021.
Date of publication 3 Dec. 2021; date of current version 14 Feb. 2022.
This work was supported in part by the National Natural Science Foundation of
China (NSFC) under Grants 61822205, 61632020, 61632013, and 61902211.
(Corresponding author: Zhenhua Li.)
Recommended for acceptance by V. Cardellini.
Digital Object Identifier no. 10.1109/TPDS.2021.3132496

1. We mainly focus on solving write-write conflicts, as they are more
severe in degrading user experiences. Cf. Section 5 of supplementary
material, which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPDS.2021.3132496,
for descriptions of read-write and write-write conflicts and our sys-
tem’s reaction in dealing with them.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022 2163

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9232-9185
https://orcid.org/0000-0001-9232-9185
https://orcid.org/0000-0001-9232-9185
https://orcid.org/0000-0001-9232-9185
https://orcid.org/0000-0001-9232-9185
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
mailto:zhaominghao.thu@gmail.com
mailto:lizhenhua1983@gmail.com
mailto:liuwei199803@gmail.com
mailto:chenjian1995.thu@gmail.com
mailto:lixingyao816@gmail.com
http://doi.ieeecomputersociety.org/10.1109/TPDS.2021.3132496

practice of mitigating false conflicts in cloud storage service-
based collaborative editing by intentionally dividing an entire
text file into multiple separate files [14], [20]. Such false con-
flicts can be automatically resolved at the server side without
user intervention. In this paper, we show that it is feasible to
provide effective collaboration support in cloud storage serv-
ices by intelligentlymerging conflicting file versions using the
three-way merge method [57], [67], where two conflicting ver-
sions are merged based on a common-context version. This is
enabled by the inference and transformation of users’ editing
operations; meanwhile, no lock is used so as to achieve the
transparency and user-friendliness. As depicted in Fig. 1, our
basic idea is to first infer the collaborators’ operation sequen-
ces [Fig. 1a], then transform these sequences based on their
true conflicts (if any) [Fig. 1b] to generate the final version,
and finally deliver the merged version to the clients [Fig. 1c].
Compared to a file-level or line-level conflict resolution (e.g.,
adopted by Dropbox or Git), our solution is more fine-
grained: modifications on different parts of the same file or
even the same line can be automatically merged. Building a
system with the above idea, however, requires us to address
two technical challenges. First, inferring operation sequences
in an efficient way is non-trivial, since it is a computation-
intensive task for cloud storage services.2 As illustrated in
Fig. 1a, when two versions V1 and V2 emerge, we need to first

find the latest common-context version V0 hosted at the cloud,
and then infer two operation sequences S1 and S2 that convert
V0 to V1 and V2, respectively. The common approach using
dynamic programming may take excessive time in our sce-
nario, e.g., �6.5 min for a 5-MB file. To address the issue, we
first conduct region narrowing to significantly reduce the prob-
lem scale by cutting off the common prefix and suffix, given
that edits usually only occur to a small part of a file (termed
an edit region); then, we leverage an edit graph [58] to efficiently
extract operations within the edit regions. With such efforts,
the inference time is essentially reduced, e.g.,�1 second for a
5-MB file.

The second challenge is how to transform and merge S1

and S2 into Sr with minimal conflict, i.e., 1) simplifying man-
ual conflict resolution of text files by sending only one
merged version (V1;2) to the collaborators; and 2) retaining
the collaborators’ editing intentions while minimizing the
amount of conflicts to be manually resolved in V1;2. As
shown in Fig. 1b, it is easy to directly transform and merge
S1 and S2 via operation transformation [39], if there is no true
conflict. To address the challenging case (of true conflicts),
we utilize a conflict graph [54] coupled with topological sorting
to reorganize all operations, so as to prioritize the transfor-
mation of real conflicting operations and minimize their
impact on the transformation of other operations.

Besides solving the two challenges, we devise a locality-
aware, operation-assisted delta sync (LOADsync) mecha-
nism to quickly deliver updates for large files (> 64 KB).
When a client uploads a large file to the cloud, LOADsync
leverages the locality of edits to accelerate the computation-

TABLE 1
Common Patterns of Unexpected and Undesired Collaborative Editing Experiences

Studied in This Paper

Pattern 1: Losing updates All studied
Alice is editing a file. Suddenly, her file is overwrit- cloud storage
ten by a new version from her collaborator, Bob. services

Pattern 2: Conflicts despite coordination
Alice coordinates her edits with Bob through emails All studied
to avoid conflicts by enforcing a sequential order. cloud storage
Every edit is saved instantly, but conflicts still occur. services

Pattern 3: Excessively long sync duration Dropbox,
Alice edits a shared file and confirms that the edit OneDrive,
has been synced to the cloud. However, Bob does SugarSync,
not receive the updates for a very long duration. Seafile, Box

Pattern 4: Blocking collaborators by opening files Seafile
Alice simply opens a shared Microsoft Office file (only for
without making any edits. This mysteriously dis- Microsoft
ables Bob’s editing the file. Office files)

Pattern 5: Inability to save
Bob finishes editing and hopes to save his edits. All studied
However, the editor refuses to save the file. Some- cloud storage
times the editor forces to save it as a separate copy. services

Pattern 6: Mysterious disappearance of edits
Alice finished editing and her edits have been up- All studied
loaded. However, her edits are not received by any cloud storage
collaborators and her local copy is overwritten. services

Pattern 7: Multiple conflicts w.r.t. sequential edits
Alice uploaded her version to the cloud and stopp- Box
ed editing. Afterwards, Bob intermittently edits and SugarSync
saves the file, but multiple “conflict copies” appear. Seafile

2. In contrast, it is straightforward and lightweight to acquire a
user’s operation sequences in Google Docs [6], Overleaf [11], and simi-
lar services, where a dedicated editor is used and monitored in real
time.

2164 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

intensive block comparison process in classic delta sync
schemes – once two matched blocks are found, it directly
moves ahead to compare their successive blocks and omits
the checksum-based searching. On the other side, when the
cloud distributes a merged version for a large file, LOAD-
sync employs operation-guided fast reconstitution which gen-
erates instructions to direct the client to fast constitute the
merged version from her local version, as shown in Fig. 1c.
Additionally, we divide each file into variable-sized chunks
for edit-friendly deduplication, and exploit the implicit
operations inferred during conflict resolution to simplify
the chunking process – only the boundaries of those chunks
affected by the operations need recalculation.

We build UFC2 atop Amazon EFS and S3 to implement
our design. The evaluation using real-world traces indicates
that conflicts generated during collaboration are signifi-
cantly reduced by 98% on average (the remainder are true
conflicts). Meanwhile, the incurred time overhead by a con-
flict resolution is between 10 and 60 ms for regular-sized
files, which is merely 0.6%–4% (2% on average) of the deliv-
ery time for a file update. Besides, LOADsync reduces the
delivery time for a file update to 20 ms – 2 seconds, outpac-
ing rsync [73] by � 5�. Moreover, UFC2 is able to simulta-
neously support �8500 clients using a typical VM server
instance. Finally, all the source code and measurement data
are released at https://UFC2.github.io.

2 DESIGN CHALLENGES

In this section, we employ trace-driven experiments, special
benchmarks, and reverse engineering to deeply understand
the design challenges of collaborative support in today’s

cloud storage services. In particular, we analyze the root
causes of poor experiences listed in Table 1.

2.1 Study Methodology

In order to quantitatively understand how today’s cloud
storage services behave under typical collaborative editing
workloads, we first collected ten real-world collaboration
traces as listed in Table 2. Among them, seven are provided
by users (with informed consent) that collaborate on code/
document writing using different cloud storage services.
The other three are extracted from well-known open-source
GitHub projects. Each trace contains all the file versions
uploaded by every involved user during the collection
period.

For the first seven traces, relatively a few (i.e., 5–9) collab-
orators work on a project for a couple of months. Each of
their workloads is unevenly distributed over time: during
some periods collaborators frequently edit the shared files,
whereas during the other periods there are scarcely any
edits to the shared files. By contrast, in the last three traces,
a large number of collaborators constantly submit their edits
for quite a few months, and thus generate many more file
versions. In addition, the collaborators involved in all the
ten traces are located across multiple continents.

Using these traces, we conducted a comparative mea-
surement study of eight mainstream cloud storage services:
Dropbox, OneDrive, Google Drive, iCloud Drive, Box, Sug-
arSync, Seafile, and Nutstore. For each service, we ran its
latest PC client (as of Aug. 2020) on Windows-10 VMs
rented from Amazon EC2; these VMs have the same hard-
ware configuration (a dual-core CPU@2.5 GHz, 8 GB mem-
ory, and 128 GB SSD storage) and network connection

Fig. 1. Working principle of UFC2: (a) inferring the operation sequences S1 and S2 that respectively change V0 to V1 and V2, with region narrowing and
edit graphs; (b) transforming and merging S1 and S2 into Sr with the minimal conflict, based on conflict graphs and topological sorting; (c) generating
the merged version V1;2 by executing Sr on V0, and quickly delivering it to clients.

TABLE 2
Statistics of the Ten Real-World Collaboration Traces

Trace Timespan # Col-s # Files # Versions Avg. Size Major File Types

Dropbox-1 11/2/2018–2/6/2019 5 305 3527 86 KB tex (52%), pdf (16%), Matlab src (24%) & fig (4%)
Dropbox-2 4/3/2019–5/14/2019 6 216 2193 67 KB tex (57%), pdf (21%), Matlab fig (9%)
OneDrive 3/15/2019–5/31/2019 5 253 2673 83 KB tex (61%), pdf (15%), Matlab fig (7%)
iCloud Drive 2/1/2019–4/30/2019 6 301 3211 59 KB tex (53%), pdf (22%), Matlab fig (12%)
Box 3/21/2019–5/2/2019 8 273 2930 60 KB tex (66%), pdf (27%)
SugarSync 4/11/2019–5/26/2019 9 325 3472 89 KB tex (49%), pdf (25%), Matlab src (19%) & fig (3%)
Seafile 2/17/2019–4/30/2019 7 251 2823 71 KB tex (55%), pdf (19%), Matlab fig (10%)
Spark-Git 1/15/2018–3/27/2019 58 15181 129957 4 KB Scala (78%), Java (6%), py (5%)
TensorFlow-Git 7/24/2018–3/27/2019 86 16754 246016 9 KB py (30%), C header (14%) & src (29%), txt (20%)
Linux-Git 9/9/2018–3/30/2019 87 63865 901167 13 KB C header (31%) & src (42%), txt (16%)

“Col-s” means collaborators, “src” means source code, “py” means python, and “Avg. Size” means average file size.

ZHAO ET AL.: UFC2: USER-FRIENDLY COLLABORATIVE CLOUD 2165

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

https://UFC2.github.io

(whose downlink/uplink bandwidth is restricted to 100 /
20 Mbps by WonderShaper to resemble a typical residential
network connection [1], [15]).

We deployed puppet collaborators on geographically
distributed VMs across five major regions (i.e., including
South America, N. Virginia and N. California, Europe, the
Middle-East, and the Asia-Pacific) to replay a trace, with
one client software and one puppet collaborator running on
one VM. For character encoded files including text, src
(source code) files, and MATLAB src files, a puppet collabo-
rator first opens the file with Notepad, and then copies the
whole content of its successive version to replace the origi-
nal file content, to simulate users’ editing behavior. After-
ward, he saves the file at the time according to the modified
time recorded in file metadata of the collected trace. For ver-
sions generated with an interval within 23 seconds (i.e.,
Median in version generation interval), the editor keeps
open and waits for subsequent edits. Otherwise (if the next
version is generated in an interval beyond 23 seconds), the
editor will be closed. This design simulates the user’s edit-
ing behavior more precisely and minimizes the effects of
editor launching. In terms of files of other kinds (e.g., fig-
ures, binary files, and PDF files), we directly copy them to
sync folders. We record the system event in the sync folder,
such as file arrival time, conflict versions, and the appear-
ance of temporary files. Besides, to safely reduce the dura-
tion of the replay, we skipped the “idle” timespan in the
trace during which no file is edited by any collaborator.

In addition, we strategically generated some “corner
cases” that seldom appear in users’ normal editing, so as to
make a deeper and more comprehensive analysis. For
example, we edited fix-sized small (KB-level) files to mea-
sure cloud storage services’ sync delay, so as to avoid the
impact of file size variation; we edited a random byte on a
compressed file to figure out their adoption of delta sync
mechanisms; and we performed specially controlled edits
to investigate their usage of locks, as well as their delivery
time of lock status. Besides, to investigate the effects of dif-
ferent applications (editors) and operating systems, we also
manually conducted small-scale collaboration experiments
with various applications (including Vim, VS code, MS
Office, Adobe Acrobat, Adobe Photoshop, etc.) and on
UNIX-like operating systems (i.e., Ubuntu 20.04 and macOS
Big Sur). Manual experiments are used, as some applica-
tions are so heavy that they cannot be run on VMs, while

some applications cannot be manipulated with scripts.
Manual experiments also bring convenience to observations
on details of system and software actions.

We captured all the IP-level sync traffic in the trace-
driven and benchmark experiments via Wireshark [21].
From the traffic, we observe that almost all the communica-
tions during the collaboration are carried out with HTTPS
sessions (using TLS v1.1 or v1.2). By analyzing the traffic
size and occurrence time of respective HTTPS sessions, we
can understand the basic design of these eight mainstream
cloud storage services, e.g., using full-file sync or delta sync
mechanisms to deliver a file update.

To reverse engineer the implementation details, we
attempted to reverse HTTPS by leveraging man-in-the-mid-
dle attacks with Charles [3], and succeeded with OneDrive,
Box, and Seafile. For the three services, we are able to get
the detailed information of each synced file (including its
ID, creation time, edit time, and to our great surprise the
concrete content), as well as the delivered lock status and
file update. Furthermore, since Seafile is open source, we
also read the source code to understand the system design
and implementation, e.g., its adoption of FIFO message
queues and the CDC delta sync algorithm.

For the remaining five cloud storage services, we are
unable to reverse their HTTPS sessions, as their clients do
not accept the root CA certificates forged by Charles. For
these services, we search the technical documentation
(including design documents and engineering blogs) to
learn about their designs, such as locks and message
queues [4], [7], [9], [10], [18], [19], [27].

2.2 Results and Findings

Our study quantifies the occurrence of conflicts in different
cloud storage services, and uncovers their key design prin-
ciples as summarized in Table 3.

Architecture and Workflow. Based on our multifold efforts
(including passive and active measurements, reverse engi-
neering, as well as source code and technical reports reading,
etc.), we figure out the common architecture andworkflow of
existing cloud storage services and demonstrate them in
Fig. 2. As shown in this figure, each cloud storage service
consists of the cloud backend and the client. The cloud uti-
lizes dedicated data structures to organize users’ filesystems,
e.g., maintaining the filesystem namespace and organizing

TABLE 3
A Brief Summary of the Collaboration Support of the Eight Mainstream Cloud Storage Services in Our Study

Cloud Storage Lock Conflict Message File Update

Service Mechanism Resolution Queue Method

Dropbox No lock Keep all the conflicting versions LIFO rsync

OneDrive No lock Keep all the conflicting versions Queue Full-file sync
Google Drive No lock Keep only the latest version - Full-file sync
iCloud Drive No lock Ask users to choose among multiple versions - rsync

Box Manual locking Keep all the conflicting versions Queue Full-file sync
SugarSync No lock Keep all the conflicting versions Queue rsync

Seafile Automatic/manual� Keep all the conflicting versions FIFO CDC
Nutstore Automatic locking Keep all the conflicting versions - Full-file & rsync

“�”: Seafile only supports automatic locking for Microsoft Office files. “-”: we do not observe obvious queuing behavior.

2166 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

the file history (for cloud storage services that support ver-
sioning). The files are normally divided into chunks and
stored in the object storage. Whenever a user generates a
new version, the changed data chunks will be
“automatically” synced to the other collaborators.

The sync procedure is achieved by coordinated interac-
tions between the cloud and the client. Specifically, the client
monitors user’s sync folder, and once a change on a file is
detected, the client pushes the update to the cloud through a
message queue (Step �2). For cloud storage services using
locks, before uploading the file content, the client first issues
a lock status (Step �1) to the cloud. This lock status will be
immediately forwarded to other collaborators (Step �3),
whose clients will then lock the corresponding file. In terms
of downloading file chunks, the client periodically sends
check/fetch requests to the cloud (Step �4), which also usu-
ally go through amessage queue before arriving at the cloud,
and get responses if newer versions exist (Step�5).

Occurrence Probability of Conflicts. When the ten traces are
replayed with each cloud storage service, we find consider-
able difference (ranging from 0 to 4.8%) in the ratio of con-
flicting file versions (generated during a replay) over all
versions, as shown in Table 4. Most notably, Google Drive

appears to have never generated conflicts, because once it
detects conflicting versions of a file (at the cloud) it only
keeps the latest version based on their server-side time-
stamps. In contrast, the most conflicting versions are gener-
ated with iCloud Drive, because its sync delay (i.e., the
delivery time of a file update) is generally longer than that
of the other cloud storage services (as later indicated in
Fig. 5 and Table 5). In comparison, for each trace Nutstore
generates the fewest conflicting versions (with Google Drive
not considered), as its automatic locking during collabora-
tion can avoid a portion (7.6%–19.1%) of conflicts.

Locks. We observe that the majority of the studied cloud
storage services (Dropbox, OneDrive, Google Drive, iCloud
Drive, and SugarSync) never use any form of locks for files
being edited. As a consequence, collaboration using these
products can easily lead to conflicts. Box, Seafile, and Nut-
store use coarse-grained file-level locks; unfortunately, we
find that their use of locks is either too early or too late,3-

leading to undesired experiences. This is because cloud
storage services are unable to acquire users’ real-time edit-
ing behaviors and thus cannot accurately determine when
to request/release locks. Specifically, locking too early leads
to Pattern 4 in Table 1, locking too late (locking after editing)
leads to Pattern 1, and unlocking too early leads to Pattern 2.

Box only supports manual locks on shared files. When
Alice attempts to lock a shared file f and Bob has not
opened it, f is successfully locked by Alice and then Bob
cannot edit it (until it is manually unlocked by Alice). How-
ever, the locks may not always preform as expected. In
essence, Box implements locks by creating a process on Bob’s PC,
In this case, if Bob has already opened f when Alice
attempts to lock it, he can still edit it but cannot save it
(resulting in Pattern 5.), because when Bob attempts to save
his edit the file editor (e.g., MS Word) will re-check the per-
mission of f . Seafile automatically locks a shared file f
when f is opened by an MS Office application, and f will
not be unlocked until it is closed. This locking mechanism is
coarse-grained and may lead to Pattern 4. For non-MS
Office files, Seafile supports manual locks in the same way
as Box, and thus they have the same issue in collaboration.

Nutstore attempts to lock a shared file f automatically,
when Alice saves her edit. At this time, if Bob has not
opened f , f is successfully locked by Alice and Bob cannot
edit it; after Alice’s saved edit is propagated to Bob, f is

Fig. 2. Workflow and system components for supporting collaboration in
mainstream cloud storage services. Solid boxes (lines) denote the com-
mon components (workflows) among all the studied cloud storage serv-
ices, whereas dotted boxes (lines) denote the components (workflows)
in specific ones.

TABLE 4
Ratio of Conflicting File Versions (Over All Versions) When the

Ten Traces are Replayed With Each of the Studied Cloud
Storage Services

Trace DB OD GD ID Box SS SF NS

DB1 4.4% 4.4% 0 4.5% 4.3% 4.3% 4.3% 3.6%
DB2 4.7% 4.7% 0 4.8% 4.6% 4.7% 4.6% 3.8%
OD 4.1% 4.1% 0 4.2% 4.0% 4.0% 4.1% 3.5%
ID 4.1% 4.0% 0 4.1% 4.1% 4.1% 4.1% 3.4%
Box 4.3% 4.3% 0 4.4% 4.2% 4.3% 4.3% 3.7%
SS 4.2% 4.1% 0 4.2% 4.2% 4.1% 4.2% 3.7%
SF 4.5% 4.5% 0 4.6% 4.5% 4.5% 4.5% 3.8%
SG 1.3% 1.3% 0 1.3% 1.3% 1.3% 1.3% 1.2%
TG 3.5% 3.5% 0 3.5% 3.5% 3.5% 3.5% 3.2%
LG 4.0% 4.0% 0 4.0% 4.0% 4.0% 4.0% 4.0%

DB¼Dropbox, OD¼OneDrive, GD¼Google Drive, ID¼iCloud Drive,
SS¼SugarSync, SF¼Seafile, NS¼Nut-store, SG¼Spark-Git, TG¼Tensor-
Flow-Git, and LG¼Linux-Git.

TABLE 5
Statistics (in Unit of Second) of the Delivery Time of a File

Update, Where the File is Several KBs in Size

Cloud Service Min Median Mean P99 Max

Dropbox 1.6 2.0 141.2 312 17751
OneDrive 1.6 4.0 33.4 106 4415
Google Drive 10.9 11.7 11.7 12.9 18.1
iCloud Drive 8.1 11.8 11.9 11.9 16.9
Box 4.4 5.1 41.8 115 6975
SugarSync 2.0 6.8 51.3 124 7094
Seafile 2.7 4.0 53.8 99 9646
Nutstore 4.2 5.0 5.0 5.0 5.6

3. Ideally, a file should be locked right before the user starts editing,
and unlocked right after the user finishes the editing.

ZHAO ET AL.: UFC2: USER-FRIENDLY COLLABORATIVE CLOUD 2167

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

automatically unlocked. However, if Bob opened the shared
file before Alice saves the file, Nutstore has the same prob-
lems as Box and Seafile.

Finally, we are concerned with the delivery time of a lock
status (i.e., whether a file is locked). According to our meas-
urements, the lock status is delivered in real time with
�100% success rates. As shown in Fig. 3, the delivery time
ranges from 0.7 to 1.6 seconds, averaging at 1.0 second,
much less than the file delivery time (averaging at about 50
seconds). Especially, no tail latency is observed for deliver-
ing lock status. Note that tail latency is prominent in Box
and Seafile when delivering file content, and it also preva-
lently exists in cloud systems and web services [33], [34].
Thus, we suspect that today’s cloud storage services imple-
ment dedicated infrastructure (such as queues with dedi-
cated scheduling [47], [79]) for managing locks.

In summary, implementingdesirable locks in cloud storage
services is not only complex and difficult but also somewhat
expensive. Therefore,we feel it wiser to give up using locks.

Conflict Resolution. We find three different strategies for
resolving the conflicts. First, Google Drive only keeps the
latest version (defined by the timestamp each version
arrives at the cloud). All the older versions are discarded
and can hardly be recovered by the users (Google Drive
does not reserve a version history for any file). Note that
this notion of “latest” may not reflect the absolute latest
(which depends on the client-side time), e.g., when the real
latest version arrives earlier due to network latency. Second,
iCloud Drive asks the user to choose one version from all
the conflicting versions. The user has to compare them by
hand, and then make a decision (which is often not ideal).
Third, a more common solution is to keep all the conflicting
versions in the shared folder, and disseminate them to all
the collaborators. This solution is more conservative (which
does not cause data loss), but leaves all burdens to users.

Moreover, given the distributed nature, merging efforts
from the collaborators could cause further conflicts if not
coordinated well.

Given the difficulties in resolving conflicts, we advocate
that cloud storage services should make more effort to pro-
actively avoid, or at least significantly reduce, the conflicts.

Conflicts Identification and Replica Generation. We also
investigate how the conflicts are identified, as well as how
these “conflict versions” are generated and propagated. We
notice that all cloud storage services adopt a server-centric
eventual consistency maintenance strategy; here “server-cen-
tric” means only the server maintains version information
(e.g., version number) which can be used for detecting con-
flicts, and “eventual consistency” means finally each collab-
orator’s sync folder achieves the same state, i.e., the file
marked as “conflict version” will be identical for every col-
laborator (including the one who generates this version).

To investigate the workflow in the scenario of conflict,
we instrumented Bob to edit shared Z-byte video files,
where Z 2 1M; 10M; 20M; 30M; 40Mf g. We use video files
as they are highly compressed, so as to get rid of the influ-
ence of data compression used by cloud storage services,
and their relatively large sizes bring convenience to our
observation. We capture the sync traffic and monitor the
behavior of Bob’s client. As shown in Fig. 4, we observe that
most of the studied cloud storage services (Dropbox, One-
Drive, iCloud, Box, Seafile, and Nutstore) consume 1�
downstream traffic when conflicts happen, which are
incurred by downloading Alice’s copies. In contrast, Sugar-
Sync consumes 2� traffic in downloading, which indicates
that, it not only downloads Alice’s version, but also re-
downloads the version generated by himself.

Fig. 4. Sync traffic in whole-file edit (on the side who latterly submit his
edit). Fig. 6. Two different approaches in conflict identification.

Fig. 3. CDF of the delivery time of a lock status. Note that among all the
studied services, only three of them use locks.

Fig. 5. CDF of the delivery time of a file update, where the file is several
KBs in size.

2168 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

In essence, this disparity derives from different methods
used for conflict detection and conflict-version generation.
Specifically, Dropbox, OneDrive, Box, Seafile, and Nutstore
adopt a check-in-advance approach. As shown in Fig. 6a,
Alice and Bob edited a shared file based on a common, con-
sistent version, and Alice, before Bob, saves and uploads
her version to the cloud (step �1 and �2). Before syncing the
file contents, their clients first check with the cloud, and in
this circumstance Bob will be informed he has generated a
conflicting version. Thus, Bob’s client locally renames Bob’s
version as “conflicted copy” (step �3) and uploads it (i.e.,
the renamed version) to the cloud (step �3). This renamed
version is regarded as a new file and synced to Alice
(step �5). Finally, Alice’s version, with the original name, is
delivered to Bob (step�6).

In comparison, SugarSync adopts a direct-push approach.
As shown in Fig. 6b, whenever a Bob’s version is generated,
it will be directly delivered to the cloud without in-advance
conflict checking (step �2). If Alice has uploaded her version
before (step �1), the cloud will identify Bob’s version as
“conflicted copy”, since his version is not generated based
on the newest version at the cloud (i.e., Alice’s version).
Accordingly, Bob’s version will then be renamed at the
cloud (step �3) and delivered to both sides (step �4 and �5).
When this file delivery procedure finishes, there will be two
files with identical content but different names appearing at
Bob’s side, i.e., a renamed “conflicted copy” from the cloud
and the one kept on his local folder. Finally, Alice’s version
is synced to Bob (with rsync, detailed latter) to overwrite
the file with the original name (step�6).4

However, such designs cannot ensure the aforemen-
tioned conflict prevention and resolution strategies work as
expected. When Bob is editing a file and Alice’s version
begins to be synced to him, these protocols will fail in find-
ing conflicts. In such cases, different annoying situations
will appear, for different categories of editors being used.
Specifically, if Bob is using an exclusive editor (not allowing
other applications to write the file it opened, such as MS
Office and Adobe Acrobat), Alice’s edits cannot be synced
to Bob, leading to Pattern 3. If Bob is using a dynamic non-
exclusive editor (allowing other applications to write the file

it opened, and meanwhile periodically checking and reload-
ing modifications), Bob’s unsaved edits will be overwritten,
leading to Pattern 1. Besides, if Bob opens the file with a
non-dynamic non-exclusive editor with a checking-before-sav-
ing mechanism (i.e., the editor allows other applications to
modify the opened file; but when the user saves the file, the
editor will check whether it has been changed since it was
opened, such as VS code), the application will refuse to save
it, leading to Pattern 5; in contrast, if an editor without such
a checking mechanism is used (such as Adobe Photoshop),
Bob successfully saves his edits and overwrites Alice’s ver-
sion (which has been synced to him after he opened the
file), and Bob’s version will then be transparently synced to
Alice and overwrite her local copy, resulting in Pattern 6. In
addition, an impeccable and universally applicable imple-
mentation of existing conflict prevention strategies is hard,
due to the diversity of operating systems and applications
their clients work with. Specifically, for the check-in-advance
approach which renames conflicting files at the client-side,
the rename operation will fail when the user opens a file
with an exclusive editor. To address this issue, cloud stor-
age services are forced to design their own implementation-
level strategies, some of which, however, result in multiple
conflicts whenever Bob continuously edits and saves a file
(i.e., Pattern 7), as summarized in Table 6. For Dropbox, if
the user edits a file with MS Office applications, it invokes
the applications’ rename interface, instead of directly
invoking the system interface, so that subsequent operations
are directly moved to the new file; but for other none-Office
applications, each time Dropbox finds that a conflicting ver-
sion is generated locally but rename operation fails, it aborts
this attempt until the application is closed. For OneDrive,
once such a situation is detected, OneDrive stops syncing
the corresponding file until Bob closes it. During such a
period, both Alice and Bob’s updates do not sync to the
cloud, and all their (simultaneous) edits are made on their
local copies. For Box, however, it saves each edit as a sepa-
rate file with a file name like “foo.pdf (Bob’s iMac-2).”

In terms of the Seafile, it adopts a similar but wiser
approach. When such a situation (i.e., Bob’s opening a file
prevents Alice’s edits sync to him) happens, Seafile finds
conflict when Bob first saves his edits. Then Bob’s client
saves his edits as a renamed file like what Box does, with a
filename like “foo.doc (Bob’s conflicts + timestamp 1).”

TABLE 6
Cloud Storage Services’ Replica Generation Strategies for Continuous Edits With Exclusive Editors; Note That rename Operation

Will Normally Fail for an Opened File in Windows Operating System

* the icons of , , and denotes that the multiple conflicts issue exists in Windows, macOS, and Linux operating systems; whereas “-” denotes the services do
not encounter this issue in any system.

4. Note that step �5 and �6 may operate in a different order, but both
achieve the same result.

ZHAO ET AL.: UFC2: USER-FRIENDLY COLLABORATIVE CLOUD 2169

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

Afterward, the Seafile client stops syncing the file with the
original name (say, “foo.doc”), and all the subsequent edits
are made on “foo.doc.” The original sync procedure restarts
until Bob closes this file; afterward, Bob finds he generated
a new conflicting version and then renames it as “foo.doc
(Bob’s conflicts + timestamp 2).” It is also worth mentioning
that Nutstore also suffers this issue in UNIX-like systems,
even if it adopts locks to prevent conflicts – it happens
when a user begins to edit a file before a lock signal arrives.
Note that Nutstore attempts to lock a file when a user first
time saves his edits, and it is possible to change permissions
for an opened file in UNIX-like systems.

The multiple conflict issue also exists in services using
the direct-push approach – it happens when a user continu-
ously edits and saves a file with an exclusive editor. In this
case, another collaborator’s version fails to sync to him (as
the editor blocks other processes to modify this file),
whereas his subsequent edits will sequentially be uploaded
to the cloud and regarded as conflicts. The multiple conflict
issue severely impairs user experience, as periodical saving
frequently happens in continuous editing, and manually
solving conflicts among multiple files is more miserable. In
summary, existing conflict resolution and prevention strate-
gies are implemented with general or OS/application-spe-
cific deficiencies, either being unable to find conflicts or
leading to miserable consequences in solving and prevent-
ing conflicts in particular circumstances. Thus, we advocate
a conflict resolution method that leaves minimum work to
the client-side may help alleviate the implementation diffi-
culty of their clients’ running environments.

Delivery Latency and Message Queue. Delivery latency of
a file (update) prevalently exists in cloud storage at both
infrastructure (e.g., AWS S3) and service (e.g., Dropbox)
levels [32], [44], [69], [70], [74]. It stems from multiple fac-
tors such as network jitter, system I/O, and load balanc-
ing in the datacenter [44], [51]. We measure the delivery
time of a file update regarding the eight cloud storage
services. As in Fig. 5 and Table 5, some services always
have reasonable delivery time. On the other hand, in a
few services, the maximum delivery time reaches several
hours for a KB-level file, and the 99-percentile (P99) deliv-
ery time can reach hundreds of seconds. The unpredict-
ability and long tail latency can sometimes break the time
order among file updates, which is the main root cause of
Patterns 2 and 3.

Additionally, we find that the implementation of mes-
sage queues in some cloud storage services aggravates the
delivery latency. Specifically, different services have very
different message queue implementations, leading to differ-
ent queueing behaviors. For a FIFO queue (used by Seafile),
when the server is overloaded, many requests for file/fetch
updates are processed by the server but not accepted by the
client due to client-side timeout, thus wasting the server’s
processing resources. This problem can be mitigated by
using LIFO queues (used by Dropbox). However, for a
LIFO queue, the requests from “unlucky” users (who
encounter the server’s being overloaded after issuing fetch
update requests) wait for a long duration. We suspect that
the services with excessively long delivery time are using
big shared queues with no QoS consideration, and may ben-
efit from using a dedicated queue like QJUMP [42].

File Update Methods. Collaboration results in frequent,
short edits to files. Delta sync is known to be efficient in
updating short edits, compared with full-file sync where the
whole file has to be transferred [50]. To understand the file
update method, we instrumented Alice to modify a random
byte in a Z-byte highly compressed file already shared with
Bob, where Z 2 1; 1K; 10K; 100K; 1Mf g. Fig. 7 shows the
traffic usage for delivering the file update on both sides of
Alice and Bob. Highly compressed files are used to infer the
traffic usage as they cannot be further compressed. We find
that the sender and receiver always spend similar amount of
traffic for a file update, indicating that they use the same file
updatemethod. As shown in Fig. 7, OneDrive, Google Drive,
and Box adopt full-file sync: their traffic usage is always
larger than Z bytes for any Z; the other services adopt delta
sync (rsync [73] or CDC [64]). The traffic of Seafile varies
from 0.08 MB to 0.9 MB for an 1-MB file, because it uses
CDC [13] whose performance depends on the file content;
this conforms with its CDC-based data organization of his-
torical file versions (seen from its source code [13]).

In Nutstore, when Z <¼ 64 KB, it is always slightly
larger than the file size; when Z > 64 KB, it sharply
decreases to �20 KB. This implies that Nutstore adopts a
hybrid file update method: full-file sync for small (�64 KB)
files and delta sync for the other files, so as to achieve the
highest update speed, because small and large files are
more suitable for full-file and delta sync, respectively (full-
file sync requires fewer computation overhead and fewer
rounds of client-server message exchanges).

2.3 Implications

Our study results show that today’s cloud storage services
either do not use any locks or use coarse-grained file-level
locks to prevent conflicts. The former would inevitably lead
to conflicts. The latter, however, is hard to prevent conflicts
in practice for two reasons: 1) it is hard to accurately predict
user’s editing behaviors in real time and therefore to deter-
mine the timing of applying the lock, and 2) the latency
between the client and the server can vary significantly, so
file-level conflicts are generally inevitable. Furthermore, the
study shows that full-file and delta sync methods can be
combined to accelerate the delivery of a file update. To
address the revealed issues, we explore the possibility of
developing lock-free conflict resolution by inferring fine-
grained user intentions. We also explore a hybrid design of
full-file and delta sync methods for efficient file update and
synchronization.

Fig. 7. Sync traffic of a random-byte edit to a compressed file.

2170 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

3 OUR SOLUTION

This section aims to address the challenges uncovered in
Section 2. Our key idea is to model file editing events as
insert or delete operations (Section 3.2). Based on the
operation model, we infer the collaborators’ operation
sequences (Section 3.3), and then transform these sequences
(Section 3.4) based on their conflicts to generate the final
version. We explain the above procedure with a simple case
of two file versions, and demonstrate its applicability in
handling multiple versions (Section 3.5). Besides, we also
devise an efficient historical version maintenance and dedu-
plication scheme to facilitate conflict resolution (Section 3.6),
and design a novel file update scheme, the LOADsync
(Locality-aware, Operation-Assisted Delta rsync), to effi-
ciently deliver edits (Section 3.7).

3.1 True and False Conflicts

We examine the conflicting file versions as listed in Table 4
in great detail. We find that �1/3 of them come from non-
text (e.g., PDF or EXE) files, which, as mentioned in Sec-
tion 1, are typically generated based on text files and thus
can be simply deleted or regenerated from text files for
pretty easy conflict resolution. The rest ones relate to text
files, the vast majority of which, to our surprise, only con-
tain “false positive” conflicts as the collaborators in fact
operated on different parts of a shared file.

Take the Dropbox-1 collaboration trace as an example.
When it is replayed with Dropbox or OneDrive, among the
3,527 file versions hosted at the cloud side, 154 text files are
considered (by Dropbox and OneDrive) to be conflicting
versions and then distributed to all the collaborators. Actu-
ally, 152 out of the 154 apparently conflicting versions can be
correctly merged at the cloud side. The remaining two can-
not be correctly merged as two collaborators happen to edit
the same part of the shared file in parallel, thus generating 9
true conflicts. In other words, the vast majority of the
(coarse-grained) file-level conflicts are false (positive) con-
flicts when seen at the (fine-grained) operation level.

3.2 Explicit and Implicit Operations

We model operation as the basic unit in collaborative file
editing. A shared file can be regarded as a sequence of char-
acters, and an explicit operation is a user action that has truly
occurred to the shared file, modifying some of its characters.
In detail, an explicit operation O consists of seven
properties:

� There are two possible operation types: insert and
delete; O:type represents the operation type of O.

� The targeted string is the string that will be inserted or
deleted by O, which is denoted by O:str.

� The length of O is the (character) length of O:str,
which is denoted by O:len.

� The position of O is where O:str will be inserted to or
deleted from in the shared file, which is denoted by
O:pos.

� O must be performed on a context (file version),
which is called the base context of O, or denoted as
O:bc.

� O is performed on O:bc to generate a new context,
which is called the result context of O, or denoted as
O:rc.

� The range of characters impacted by O in O:bc is the
impact region of O, denoted as O:ir. It is calculated as

O:ir ¼ O:pos;O:posþ 1½ Þ if O:type = insert;

O:pos;O:posþO:len½ Þ if O:type = delete:

�

This formula tells that when a string is inserted to O:bc,
the insert operation only affects the position (in O:bc) where
the string is inserted; but when a string is deleted from O:bc,
the positions where all the characters of the string formerly
appear at O:bc are affected.

Automatically acquiring a user’s explicit operations is
trivial and lightweight when the editor can be monitored,
e.g., in Google Docs [6] and Overleaf [11]. In these systems,
users are required to use a designated online file editor, by
monitoring which all the collaborators’ explicit operations
can be directly captured in real time.

In contrast, our studied cloud storage services are sup-
posed to work independently with any editors and support
any types of text files, thus bringing great convenience to
their users (especially non-technical users). Therefore, we
do not attempt to monitor any editors or impose any restric-
tions on the file types, and thus cloud storage services can-
not capture users’ explicit operations. Instead, we choose to
analyze users’ implicit operations based on the numerous file
versions hosted at the cloud side. For a shared file f , implicit
operations represent the cloud-perceived content changes to
f (i.e., the eventual result of a user’s editing actions), rather
than the user’s editing actions that have actually happened
to f . Obviously, implicit operations, as well as their various
properties, have to be indirectly inferred from the different
versions of f . Since we focus on implicit operations in this
work, we simply use “operations” to denote “implicit oper-
ations” hereafter.

3.3 Operation Inference (OI)

When no conflict happens, inferring the operations from
two consecutive versions of a file is intuitive, so in this part
we only consider the OI when two conflicting versions
emerge at the cloud. Note that when there are more than
two conflicting versions, our described algorithms below
still apply. When two conflicting versions of a file, V1 and V2

are uploaded to the cloud by two collaborators, the cloud
first pinpoints their latest common-context version V0 hosted
in the cloud. Generally, the cloud knows which version is
consistent with a collaborator’s local copy during her last
connection to the cloud. When the collaborator uploads a
new version, this “consistent” version is regarded as the
base context (version) of the new version, so that all ver-
sions of a shared file constitute a version tree, in which the
parent of a version is its base context. Therefore, to pinpoint
V0 is to find the latest common ancestor of V1 and V2 in the
version tree.

After pinpointing V0, the cloud starts to infer the opera-
tion sequences (S1 and S2) that change V0 to V1 and V2,
respectively. To infer S1, the common approach is to first
find the longest common subsequence (LCS) between V0

and V1 using dynamic programming [29], [45], [61]. Then, by

ZHAO ET AL.: UFC2: USER-FRIENDLY COLLABORATIVE CLOUD 2171

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

comparing the characters in V0 and the LCS one by one, a
sequence of delete operations can be acquired, which
changes V0 to the LCS; in a similar manner, a sequence of
insert operations that changes the LCS to V1 can be
acquired. After that, the acquired delete and insert

operations are combined to constitute S1 (S2 is constituted
in a similar manner). Unfortunately, this common approach
requires Oðn0 � n1Þ computation complexity, which may
require considerable time for a large file, e.g., �6.5 minutes
for a 5 MB file.

Multifold efforts have been made to solve this issue.
First, it has been observed that real-world file edits typically
follow a locality pattern (i.e., edits usually concentrate on a
few parts of a file). Such locality feature of file edits has
been widely used for data compression and deduplication
among cloud storage systems [52], [68], [68], [75], [76], [80],
[81]. In terms of collaborations on cloud storage services,
the locality feature is especially significant, in which a user’s
edits are only confined to a very small part of the targeted
file. Ae refer to this continuous part that contains edits (i.e.,
the interval between the first and last edited characters in a
file) as edit region (Fig. 10). Fig. 8 and Table 7 demonstrate
the edit ratio (i.e., the proportion of edit region in the whole
file) for files in cloud storage service traces and GitHub
traces. It is manifested that the edit ratio is very small for
both traces, e.g., over 90% files have an edit ratio less than
20% in cloud storage service traces, and the GitHub traces
(with a much larger edit ratio than the cloud storage service
traces) have an average edit ratio of less than 40%. This
strong locality feature makes it feasible to improve effi-
ciency by conducting region reduction (i.e., clipping), i.e.,
cutting off the common prefix and suffix of V0 and V1, and
only applying the LCS algorithm on their edit regions.

Region reduction, which can be finished within linear time,
significantly reduces the problem scale of the naturally com-
plex LCS problem – it converts the issue of finding LCS
between V0 and V1 into finding LCS of their edit regions
concatenating their common prefix and suffix.

Afterward, we leverage an edit graph [58] to organize the
edit regions of V0 and V1 (denoted as v0 and v1, with n0 and
n1 bytes in length). As demonstrated in Fig. 11, an edit graph
is a directed acyclic graph with vertices at each point in the
grid ðx; yÞ, where x 2 ½0; n0� and y 2 ½0; n1�. Each vertex is
connected to its right and lower neighbors by a horizontal
edge (representing an delete operation) and a vertical edge
(representing a insert operation). If v0½x� ¼ v1½y�, there is a
diagonal edge going from vertex ðx	 1; y	 1Þ to vertex
ðx; yÞ, which represents a common character between v0 and
v1. A diagonal edge has weight 0 and a horizontal or vertical
edge has weight 1. Then, finding the LCS between the edit
regions of v0 and v1 is reduced to finding a minimum-cost
path in the edit graph that goes from the start point (0,0) to
the end point ðn0; n1Þ. The latter problem can be solved with
O(ðn0 þ n1Þ � d) complexity (cf. Section 1 of the supplemen-
tary material, available online, for the detailed procedure of
LCS calculation with this method), where d ¼ n0 þ n1 	 2l is
the number of horizontal and vertical edges (i.e., the length
of difference between v0 and v1) and l is the number of diago-
nal edges (i.e., the length of the LCS) [58]. Note that d is usu-
ally much smaller than n0 and n1 in practice (as quantified in
Fig 9). With all aforementioned efforts, it is feasible for the
cloud to infer operations for version V1 and V2 in a relatively
short time, e.g., for a 5-MB file the inference time is typically
optimized from �6.5 minutes to �1 second, resulting in a
400� reduction.

3.4 Operational Transformation (OT)

After the operation sequences S1 and S2 are inferred, which
contain s1 and s2 operations respectively (all operations in a
sequence are sorted by their position and have the same
base context V0), the cloud first detects whether there exist
true conflicts, and then constructs a conflict graph [54] (as
shown in Fig. 12) if there are any. A conflict graph is a
directed acyclic graph that has s1 þ s2 vertices representing

Fig. 8. CDF of edit ratio in cloud storage service and Github dataset.

TABLE 7
Statistics of Edit Regions Among the Collected Datasets

Trace Min Non-0 Min Median Max Mean

Dropbox-1 0 0.004 0.15 100 5.89
Dropbox-2 0 0.002 0.01 99.7 4.23
OneDrive 0.011 0.011 0.84 99.9 18.1
iCloud Drive 0.021 0.021 11.9 75.6 9.2
Box 0 25.561 72.6 99.5 56.8
SugarSync 0 0.013 0.14 97.0 2.70
Seafile 0 0.011 0.21 99.2 2.46
Spark-Git 0.003 0.003 31.2 99.6 39.9
TensorFlow-Git < 0.001 < 0.001 9.56 99.9 28.2
Linux-Git < 0.001 < 0.001 20.02 99.9 35.2

Fig. 9. Difference ratio d
n0þn1

between every two consecutive versions in
the Dropbox-1 trace.

Fig. 10. An example of locality in editing and the edit region.

2172 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

the aforementioned s1 þ s2 operations. After that, operation
transformation (OT) [39] is adopted to transform and merge
S1 and S2 into a result sequence Sr, which can be executed
on V0 to generate the merged file version V1;2.

Detecting True Conflicts. In order to detect true conflicts
between S1 and S2, the cloud first merges S1 and S2 into a
temporary sequence Stemp sorted by the operations’ posi-
tion, and initializes the conflict graph Gwith s1 þ s2 vertices
and 0 edges. Then, for each operation in Stemp, the cloud
checks whether the operations behind it conflict with it –
this is achieved by checking whether the impact regions of
two operations overlap each other. If two operations Stemp½i�
and Stemp½j� are real conflicting operations, an edge ei;j con-
necting vi to vj (denoted by solid arrows in Fig. 12) is added
to G to represent a true conflict. If there are no true conflicts
between any two operations, G is useless and simply dis-
carded. The detection, in the worst case (where each opera-
tion in S1 conflicts with each operation in S2), bears
Oððs1 þ s2Þ2Þ complexity. However, in common cases there
exist only a few conflicts, and thus the detection can be
quickly carried out with Oðs1 þ s2Þ complexity.

Basics of OT. As the de facto technique for conflict resolu-
tion in distributed collaboration, OT [39] has been well

studied [40], [66] and used (e.g., Google Docs [6], Over-
leaf [11], and Etherpad [5]). It resolves conflicts by trans-
forming parallel operations on a shared file to equivalent
sequential operations (if possible). A very simple example
of OT is shown in Fig. 13. More details and examples of OT
can be found at Section 2 of the supplementary material of
this paper, available online.

OT When There are no True Conflicts. According to our
detection results on the ten collaboration traces (cf. Table 2),
when a file-level conflict occurs there are no true conflicts
with a very high (> 95%) probability, which is consistent
with the results of our manual examination in Section 3.1.
When there are no true conflicts detected, the cloud directly
applies OT on S1 and S2 to generate Sr and V1;2. Tradition-
ally, the computation complexity of OT is deemed as
Oððs1 þ s2Þ2Þ. In our case, since there are no true conflicts
and Stemp are already sorted by the operations’ position, we
choose to transform the operations in Stemp in their descend-
ing order of position, thus achieving a much lower complex-
ity of Oðs1 þ s2Þ. After the transformation, we get Sr and
execute Sr on V0 to generate the merged version.

OT in the Presence of True Conflicts. If there are true con-
flicts detected, it is impossible to directly and correctly
resolve the conflicts as in the above case. Consequently, we
choose to prioritize the mitigation of user intervention while
preserving potentially useful information, so as to facilitate
users’ manual conflict resolution. Specifically, two princi-
ples should be followed: 1) the cloud should send only one
merged version V1;2 to the collaborators for easy manual
conflict resolution; and 2) users’ editing intentions should
be retained as much as possible, while the number of con-
flicts that have to be manually resolved in V1;2 had better be
minimized.

To realize the two principles, our first step is to utilize
topological sorting [46] to reorganize and help transform S1

and S2 (via their conflict graph G) following two rules. First,
real conflicting operations should be transformed and put
into Sr in the ascending order of their position, so that their
conflicts can be resolved at one time and thus do not nega-
tively impact the transformation of other operations. Sec-
ond, non-conflicting operations should be put into Sr in the
descending order of their position, so that they can be
quickly transformed like in the case of no true conflicts.

After S1 and S2 are topologically sorted and put into Sr

(see Fig. 12c), we apply our customized OT scheme to
embody the aforementioned two principles for resolving
true conflicts. First of all, we classify true conflicts into dif-
ferent categories that are suited to different processing strat-
egies. Given two conflicting operations O1 and O2 working
on the same base context (V0), there seem to be four different
categories of conflicts in the form of “O1:type/O2:type”: 1)

Fig. 12. Reordering conflicting operations with a conflict graph. (a) In the
two operation sequences S1 and S2, a dashed line denotes a sequence,
while a solid arrow represents a true conflict. (b) S1 and S2 are reorgan-
ized into a conflict graph, where conflicting operations are linked with
directed edges. (c) In the result sequence Sr, operations are sorted by
their topological order in the conflict graph.

Fig. 13. An example of OT that merges V1 and V2, in which O2 is trans-
formed to O0

2 to resolve the conflict between O1 and O2.

Fig. 11. A simple edit graph for reconciling V0 (the horizontal word
“properly”) and V1 (the vertical word “purple”). A diagonal edge has
weight 0 and a horizontal or vertical edge has weight 1; then finding the
LCS between V0 and V1 is converted to finding a minimum-cost path that
goes from the start point (0,0) to the end point (7,5) Cf. Section 1 in the
supplementary material, available online, for details about the manipula-
tion and implementation of the edit graph-based searching algorithm.

ZHAO ET AL.: UFC2: USER-FRIENDLY COLLABORATIVE CLOUD 2173

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

delete/delete, 2) delete/insert, 3) insert/

delete, and 4) insert/insert. Here “/” means O1:pos
� O2:pos. However, by carefully examining the impact
regions of O1 and O2 (O1:ir and O2:ir) in each category, we
find that insert/delete conflicts are never true conflicts,
because an insert operation only affects the targeted string
at the position it appears and never affects a to-be-deleted
string that starts behind this position (as shown in Fig. 14) .
Thus, we only need to deal with the other three categories.
See supplementary material Section 2.3, available online,
and the conference version [30] on how we customize OT to
solve conflicts of such categories meanwhile retain users’
edit intentions.

3.5 Merging Conflicts of Multiple Versions

See the conference version and supplementary material Sec-
tion 3, available online.

3.6 Historical Versions Maintenance and
Deduplication

The merged version V1;2 of a shared file, as well as the previ-
ous versions, should be kept in the cloud so that 1) users can
retrieve any previous versions as they wish, and 2) the
cloud can pinpoint V0 from historical versions in future con-
flict resolutions. To save the storage space for hosting histor-
ical versions, we break each version into data chunks for
deduplication. After that, (the indexes of) all versions and
their data chunks are stored in a two-layer HashTable (cf.
Fig. 15). The first layer of the HashTable is the file metadata
that indicates chunks consisting of each version of a file,
whereas the second layer indicates (objects of) data chucks.

To efficiently manage data chunks when they are modi-
fied, a simplified content-defined chunking mechanism is
devised. It utilizes the precise positions of edits obtained
from file update and conflict resolution to locate modified
chunks; only chunks subject to changes need to conduct
boundary shift. Specifically, once a new large file is uploaded
to the cloud, it is first divided into equal-sized chunks (64 KB
for each, with the last one may be smaller). The size of 64 KB
is chosen, with the consideration of catering for the hybrid
file update method (i.e., full-file sync for files with size � 64

KB, cf.Section 3.7 for detail) and drawing on Microsoft’s
experience on the effectiveness of 64 KB-chunks-based dedu-
plication [38]. Each chunk has a minimal and maximal size
threshold (32 KB and 128 KB, respectively).

Once a chunk exceeds the max size limitation due to data
insertion, it will be split into multiple equal-sized chunks
(i.e., n

b n64c
KB for each5); once the size of a chunk becomes

under the minimum-size limitation, it will be merged with
the chunk adjacently behind it, and if the merged chunk
exceeds the maximal size limitation, it will be split into two
equal-sized chunks. For a delete operation covering several
chunks, their remaining parts will be merged into one
chunk as long as either part’s size becomes under the mini-
mal-size limitation; the merged chunk will be reorganized
again if necessary (i.e., merging or re-balancing with an
adjacent chunk, see Fig. 16 for a demonstration).

3.7 File Updates Delivery

Guided by the findings in Section 2.2, we utilize full-file
sync for small (�64 KB) files and delta sync for larger files
(> 64KB), to achieve the (expected) shortest upload time.
Especially, to quickly deliver updates for large files, we
devise the LOADsync (Locality-aware, Operation-Assisted
Delta sync), which utilizes the locality feature of uses’ edits
and implicit operations inferred during conflict resolution
to accelerate the performance of rsync-like delta sync
schemes.

Locality-Aware Uploading. As we have noticed that uses’
edit features prominent locality, i.e., the edits are distrib-
uted in certain parts of a file (cf. Fig. 10), and unchanged
blocks of the file maintain their original order, these features
can be utilized to accelerate the computation-intensive 3-
level chunk search in classic delta sync schemes. Specifi-
cally, when uploading a user’s edits, the client first sends a
pre-request to the server. The server latterly splits f (i.e., the
server version) into fixed-size blocks, calculates fingerprints
of each block (including both weak hash Adler32 and strong
hash SHA-1) as a Checksum List, and sends it to the client
(the same as what traditional rsync does). Second, on
receiving the Checksum List, the client uses a byte-by-byte
sliding window over f 0 to identify duplicated blocks; and a
hash table, generated from the Checksum List, is used to

Fig. 14. An Example of the insert/delete situation (non-conflict). In
this case, the operation O1 only affects the position 5 (i.e., where the
characters are inserted) of this original string, and the characters at posi-
tions 6-21 are not changed. For delete O2, its effect positions 14-15 are
also in terms of the original string, independent of operation O1.

Fig. 15. Two-layer HashTable for hosting historical versions of a shared
file. (a) A file has one version which consists of one chunk; (b) A file has
two versions and they share a common chunk c1. (c) A file has multiple
versions and each of them consists of multiple chunks.

Fig. 16. A demonstration of boundary shift in the chunk-based deduplica-
tion scheme. (a) A file is consists of 5 (C1 - C5) chunks; afterward, some
data are inserted in C1 (by O1) and some data crossing (the boundary
of) C3 and C4 are deleted (by O2). (b) C2 is split to C6 & C7 and C3 and
C4 is merged as C8 after insert(or delete) as their size exceed (or fall
below, respectivelly) the chunck size limitation. (c) Chunk C6 becomes
C9 after insert, and C8 is merged with C5 after delete, forming chunk C10.

5. The notation bxc represents the greatest integer less than or equal
to x. This design makes each chunk have a size larger than 64 KB and
meanwhile within the maximal size limitation after splitting.

2174 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

accelerate the matching procedures. In this stage, the local-
ity pattern is utilized to bypass a considerable portion of
unnecessary chunk search operations. Whenever a block
(say ith) in f 0 matches a certain block (say jth) of f (step �1
in Fig. 17), we directly move forward and only compare the
strong hashes of their next blocks (i.e., ðiþ 1Þth block of f 0

and ðjþ 1Þth block of f), and if still, we move forward again
(step �2); otherwise, we move the sliding window for one
byte and return to the regular 3-level chunk searching
scheme (step �3). Third, after the block comparison, the cli-
ent obtains mismatched blocks (referred to as Delta Bytes)
and sends them to the server, which afterward will use the
Delta Bytes and server file f to re-construct the client file f 0.

Distributing Merged Versions With Operation-Guided Fast
Reconstitution. To deliver the server-merged version V1;2 to
clients, LOADsync employs operation-guided fast reconstitu-
tion, which leverages the implicit operations inferred during
the conflict resolution to generate instructions that direct the
client to fast constitute V1;2 from its local version. In detail, to
instruct Alice to generate V1;2 from V1, the server sends the
operation sequence S1!1;2, which is generated by merging
“reverse” operations of S1 into the resulting sequence Sr,
i.e., S1!1;2 ¼ Sr þ S	1

1 . Note that operation merging in our
modified OT is not commutable, and thus the implementa-
tions of the reversed merge for conflicting and non-conflict-
ing operations are different. In essence, for non-conflicting
operations oi 2 S1 and oj 2 S2, the result of the “reversed
merge” of these two operations is simply preserving oj in
S1!1;2. However, in terms of conflicting operations in S1

and S2, the “reversed merge” is first to reverse each opera-
tion in S1 (i.e., transform the “insert” to “delete”, and trans-
form the “delete” to “insert”), and then merge it with the
operation that conflicts with it using OT, either for
delete/delete, delete/insert, or insert/insert

conflicts.
Reversed Sync for Extending Scalability. Besides, on syncing

files when no conflicts happen, or syncing a merged version
to collaborators that do not contribute to this conflict, we
reverse the sync procedure by putting the computation-
intensive checksum search into the client-side. In other
words, we sacrifice a little extra computation overhead of
the client for improving the throughput of our system.

4 IMPLEMENTATION AND EVALUATION

To implement our design, we build a prototype system
UFC2 (User-Friendly Collaborative Cloud) on top of

Amazon Web Services (AWS), as well as evaluate its perfor-
mance under conventional and extreme environments.

4.1 Implementation

We build UFC2 on top of AWS with 5,000 lines of Python
code. Our implementation is compatible with the general
workflow and system architecture of existing cloud storage
services (cf. Fig. 2). As shown in Fig. 18, at the infrastructure
level, we host the (hierarchical) metadata of historical ver-
sions in Amazon EFS for efficient file system access, and the
(flat) data chunks in Amazon S3 for economic content stor-
age. We make such a design for an optimized balance
between performance and efficiency [36], [37], [65], as the
unit storage price of EFS (�$0.3/GB/month) is around 10�
higher than that of S3. Besides, the web service of UFC2
runs on a standard VM (with a dual-core CPU @2.5 GHz,
32-GB memory, and 256-GB SSD storage) rented from Ama-
zon EC2. The employed EFS storage, S3 storage, and EC2
VM are located at the same data center in Northern Virginia
and coordinated through Amazon Simple Queue Service
(SQS), so there is no bottleneck among them.

The UFC2 client is almost identical to other mainstream
cloud storage services. It periodically sends liveness beacon
(heartbeats) to and receives sync notifications from the
server, monitors the user’s filesystem to detect file modifica-
tion, and delivers user’s edits using delta sync.

4.2 Experiment Setups and Evaluation Methodology

Performance Under Typical Workloads. Our experiment first
aims to evaluate the effectiveness (i.e., whether conflicts are
effectively and user-friendly resolved) and performance of
UFC2 under normal collaboration circumstances. To
achieve this, we deploy puppet collaborators at the client-
side on geo-distributed VMs rented from Amazon EC2 to
replay our collected ten real-world collaboration traces (cf.
Table 2). Details of these VMs and the replay processes are
the same as those described in Section 2.1.

Performance Under Extreme Workloads. Second, we hope to
investigate its performance and throughput in extreme
environments, including editing with large files and plenty
of users simultaneously editing their files. These workloads,
however, do not exist in our collected data traces, and sel-
dom do they appear in real-world collaboration (or even
text-editing) scenarios. Consequently, we dedicatedly select
experimental materials and generate workloads.

Fig. 17. The workflow of LOADsync in uploading edits.

Fig. 18. System architecture and components of UCF2.

ZHAO ET AL.: UFC2: USER-FRIENDLY COLLABORATIVE CLOUD 2175

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

Specifically, to investigate UFC2’s performance in deal-
ing with large files, we utilize version iterations in genome
sequencing of several species as experimental materials to
simulate the scenarios of collaborative editing with write-
write conflicts. Taking human (Homo sapiens) genome data
as an example, the human genome consists of 23 pairs of
chromosomes and the Human Genome Project has finished
sequencing all of them [31]. In genome sequencing, a new
version will formalize and be formally published to replace
the former one, by filling its gaps and/or correcting its
errors (which are inevitably generated as the limitations of
current sequencing technologies). In our experiment, we
use different versions of genome data of several species,
including human (Homo sapiens), mouse (Mus musculus),
rice (Oryza sativa), and fruit fly (Drosophila melanogaster).6

The size of a single file (representing a genomic sequence of
a single chromosome) ranges from 1 to 250-MB. As the
genome files are sequentially published, to simulate the
cases of collaborations with file-level conflicts, for every suc-
cessive 3 versions, we regard the middle one as V0 and the
former and the latter version as V1 and V2, respectively.

To evaluate the scalability of UFC2, i.e., how many cli-
ents it supports to simultaneously work online, we deploy
30 VMs across the globe; each of them is configured with
dual-core CPU@2.5 GHz, 8-GB DDR memory, and 1.5+
Gbps outgoing bandwidth. Besides, we deploy two physi-
cal PCs (a Dell T7920 with 2*Intel Xeon 4114 CPU and 160-
GB DDR memory, and a Dell T5820 with Intel W-2245
CPU and 64-GB DDR memory) located at Beijing; there is
no network limitation enforced on them (with 960-Mbps
outgoing speed, tested by FastBTS [78]). We use light-
weight scripts to simulate the client’s editing behavior,
and run multiple “clients” on each PC or VM. Both virtual
and physical machines are used, to fit in with the distrib-
uted nature of cloud storage services and enable us to eco-
nomically lunch much more clients simultaneously.
Besides, we cut off all idle timespan to keep the server
computation intensive.

4.3 Experiment Results

Ratio of Conflicts Resolved.Our first metric to evaluate the col-
laboration support of cloud storage services is the number

of conflicts. We replay the ten traces with UFC2, and
observe that the file versions generated by UFC2 (at the
cloud side) are slightly different from those generated by
Dropbox/OneDrive/iCloud Drive/Box/SugarSync/Seafile
(cf. Section 2.2) due to the variation (esp., in latency) of net-
work environments; also, the resulting conflicts are slightly
different. Notably, all the false conflicts are automatically
resolved by UFC2. The remaining conflicts are all true con-
flicts that should be manually resolved by the collaborators,
assisted with the helpful information automatically added
by UFC2. As in Table 8, the ratio of conflicts is reduced by
97.5%–98.7% for different traces, i.e., an average reduction
by 98%.

Time Overhead of Conflict Resolution. Conflict resolution in
UFC2 consists of two steps: operation inference (OI, Sec-
tion 3.3) and operation transformation (OT, Section 3.4).
Thus, we first examine the time overhead incurred by the
two steps separately, and then analyze the total time of con-
flict resolution (compared to the delivery time of a file
update).

First, we record the time of OI in every conflict resolution
when replaying the ten traces with UFC2. We also conduct
stress testing with large source-code files (50–1000 KB) col-
lected from GitHub, to test the performance of this most
computation-intensive component under relatively inten-
sive workloads. We compare our method with OI using the
conventional edit graph method without clipping (which is
also referred to as the Myers algorithm, and is the de facto
standard delta algorithm adopted in the newest version of
Git [61] and the early version of UFC2 [30]).

TABLE 8
Measurement Statistics When the Ten Collaboration Traces are Replayed With UFC2

Trace # File Versions # Conflicting Versions # MV Conflicts # Conflicts # True Conflicts Reduction of Conflicts

Dropbox-1 3527 154 8 501 9 98.2%
Dropbox-2 2193 104 12 257 5 98.1%
OneDrive 2673 109 10 284 7 97.5%
iCloud Drive 3211 133 9 402 8 98.0%
Box 2930 125 5 374 8 97.9%
SugarSync 3472 147 13 523 11 97.9%
Seafile 2823 126 11 411 9 97.8%
Spark-Github 129957 1728 133 6724 167 97.5%
TensorFlow-Github 246016 8621 845 66231 1097 98.3%
Linux-Github 901167 36048 3210 216584 2882 98.7%

“MV Conflicts” denote the conflicts of multiple versions, i.e.,
 3 conflicting versions are generated from the same base version.

Fig. 19. Time overhead incurred by operation inference, OI with clipping
versus using the naive Myers diff. Here R is the correlation coefficient
between the measurements and linear fitting.6. Available at https://www.ncbi.nlm.nih.gov/datasets/genomes/

2176 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

https://www.ncbi.nlm.nih.gov/datasets/genomes/

The results are plotted as a scatter diagram shown in
Fig. 19, together with a linear fitting. The correlation coeffi-
cient (R) between the measurements and the linear fitting
results is up to 0.9107, indicating that the computation time
of OI is generally proportional to the file size. This linearity
mainly derives from the fact that, although both schemes
have a superliner complexity (in terms of file length and
number of characters changed), the modified parts of a file
stay stable with the increment of the file size (rather than
increasing proportionally with it). Second, we record the
time of OT in every conflict resolution, and find it is very
small (< 1 ms) compared to the time of OI. As shown in
Fig. 20, the time of OT is highly proportional to the number
of operations; in addition, the performance is quite similar
with or without true conflicts. According to Section 3.4, the
complexity of our devised OT is Oðs1 þ s2Þ, which explains
the experiment results. Further, we calculate the total time
of a conflict resolution, and record the delivery time of the
corresponding file update (using the hybrid full-file/delta
sync method). As shown in Fig. 21, the total time of a con-
flict resolution is 10–80 ms, while the delivery time of a file
update is 1.5–3 seconds. The former is merely 0.6%–3% (on
average 2%) of the latter, showing that our conflict resolu-
tion brings negligible performance overhead to the collabo-
ration in cloud storage.

Time Overhead of LOADsync versus Traditional rsync.
We record the server and the client-side computation
time in uploading and downloading updates. Meanwhile,
we also compare the server and client-side computation
overhead in uploading edits with that of traditional
rsync. We do not compare their downloading perfor-
mance, as the rsync is a symmetric scheme, and thus its

computation overhead in downloading is largely similar
to that of uploading.

As shown in Fig. 22, both LOADsync server and client
consume a little time (0.3–2 ms) in uploading edit for files
with size �64 KB. This is because LOADsync uses full-file
sync to deliver edits for small files, and thus not much com-
putation is required. For large files (
64 KB), the perform-
ances of LOADsync server and traditional rsync are
almost the same, as they calculate the Checksum Lists with
identical procedures. In terms of the rsync client, it con-
sumes more time (� 3�) than rsync server, as the client
has more computation workload (e.g., checksum searching).
In contrast, the LOADsync client consumes much less time
than the LOADsync server (e.g., �10 ms for a 100KB file), as
it utilizes the locality feature to boost the chunk search and
comparison procedure (cf. Section 3.7 for detail).

For updates downloading, as shown in Fig. 23, when no
file-level conflicts exist, UFC2 incurs little computation
overhead in delivering small files (� 64KB). In terms of big
files, we notice that the UFC2 server consumes much less
computation overhead than the UFC2 client; this is because
the LOADsync reverses the rsync procedure, leaving
heavy workloads to the client for extending throughput. In
downloading server-merged versions, i.e., when file-level
conflicts exist, both UFC2 server and UFC2 client consume
very short time (0.2 – 8 ms, 5 ms in average) in generating/
executing the “reversed merge” operations (cf. Section 3.7).

Network Overhead. We compare the sync traffic of UFC2
with those of Dropbox, Google Drive, iCloud Drive, and
Nutstore, for a file update. We only select the four cloud
storage services since Dropbox, Google Drive, and iCloud
Drive each represent a typical strategy for conflict resolution
adopted by existing cloud storage services (i.e., keep all

Fig. 20. Time overhead incurred by our devised operation transforma-
tion. Here R1 and R2 are the correlation coefficients with and without
true conflicts.

Fig. 21. Total time overhead of a conflict resolution versus the delivery
time of a file update (using the hybrid full-file/delta sync method).

Fig. 22. Server and client-side computation time of LOADsync in upload-
ing edits, compared with classical rsync.

Fig. 23. The computation time of LOADsync when there are and there
are not file-lever conflicts.

ZHAO ET AL.: UFC2: USER-FRIENDLY COLLABORATIVE CLOUD 2177

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

conflicting versions, only keep the latest version, and force
users to choose one version, cf. Section 2.2) while Nutstore
is the only service that combines full-file sync and delta
sync to enhance the file update speed.

As shown in Fig. 24, when there are no file-level conflicts,
the sync traffic of Google Drive is close to the file size, as
Google Drive adopts full-file sync. In contrast, Dropbox and
iCloud Drive always consume nearly 10 KB and 30 KB of
sync traffic respectively due to their adoption of delta sync;
we infer that the sync granularity of Dropbox is finer than
that of iCloud Drive. In contrast, Nutstore and UFC2 resem-
ble Google Drive for small (�64 KB) files and Dropbox for
larger files, as they both adopt full-file sync for small files
and delta sync for larger files to achieve the shortest sync
time (see Fig. 25). This hybrid sync method results in sub-
stantial savings of sync traffic for Nutstore and UFC2 after
the turning point (64 KB) in Figs. 24 and 26.

As shown in Fig. 26, when there exist file-level conflicts,
the sync traffic of Google Drive is nearly twice of the file

size. This is because (the client of) Google Drive first
uploads the local version, and then downloads the cloud-
hosted newer version to overwrite the local version. In con-
trast, the sync traffic consumed by Dropbox or iCloud Drive
is close to the file size; this is because the client of Dropbox
(or iCloud Drive) renames one of the conflicting versions,
and the renamed one is uploaded as a newly-created file
using full-file sync (which usually consumes more traffic
than necessary since delta sync can still be applied).

The case of Nutstore in Fig. 26 is a bit complex: for small
files, its sync traffic is nearly twice of the file size (similar to
Google Drive); for larger files, the traffic is slightly larger
than the file size (similar to Dropbox/iCloud Drive). This is
because Nutstore renames one of the conflicting versions
when a file-level conflict occurs – if the file is small (�64
KB), the two files are both uploaded to the cloud using full-
file sync; otherwise, the renamed file is uploaded using full-
file sync (which usually consumes unnecessary traffic)
whereas the original file is uploaded using delta sync.

Finally, we examine the case of UFC2 in Fig. 26. Its client
first uploads a conflicting version and then downloads the
merged version from the cloud. For a small file, the two ver-
sions are both delivered using full-file sync, so the sync traf-
fic is nearly twice of the file size; for a larger file, the two
versions are both delivered using delta sync (which is more
traffic-saving than what Nutstore does for a larger file), so
the sync traffic is always as small as �20 KB. This is why
UFC2 achieves the shortest sync time, as shown in Fig. 27.

Performance Under Large Files. We record the time con-
sumed in delivering updates (including computation in
delta sync, and network transmission) and resolving con-
flicts (including OI, OT, and exerting the merged operation

Fig. 24. Sync traffic of UFC2 and representative cloud storage services
for a file update when there are no file-level conflicts.

Fig. 25. Sync time of UFC2 and representative cloud storage services for
a file update when there are no file-level conflicts.

Fig. 26. Sync traffic of UFC2 and representative cloud storage services
for a file update when there exist file-level conflicts.

Fig. 27. Sync time of UFC2 and representative cloud storage services for
a file update when there exist file-level conflicts.

Fig. 28. Time consumption of UFC2 in dealing with large files; “Merged
Version Generation” denotes the process of OT and executing Sr on V0

to generate V1;2.

2178 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

sequence on the base version to generate the final version)
in dealing files of size ranging from 1-MB to 200-MB. It can
be seen that the time overhead of OI increases sharply along
with the growth of file-size (cf. Fig. 28), and accounts for the
largest parts among the full collaboration procedure when
file-size is larger than 100-MB (cf. Fig. 29). The huge com-
puting overhead derives from the intrinsic complexity of
the LCS problem. Recall that the full procedure in collabora-
tion includes uploading edits to the cloud, solving conflicts,
and delivering conflict resolution result to clients (Fig. 29).
For other steps in conflict resolution (combined as “final
version generation” in Fig. 29), they take a very few parts in
the full procedure (� 3 second).

Different from the small-file settings, data delivery-related
overhead is small than OI for big files. Specifically, although
the computation time in delta sync also increases nearly line-
arly with file size, it grows much more gently than OI.
Counter-intuitively, network transmission time overheadfirst
increases gradually (for files � 100-MB) but then stays stable.
We infer that this is perhaps because network transmission
time is mainly affected by the size of data transmitted, which,
in the genome dataset, does not grow proportionally with the
file-size. For example, the relatively large files (� 130-MB)
normally belong to the human genomes which are updated
with a high frequency; thus each version has fewer modifica-
tions. On the contrary, files with smaller sizes may belong to
other species – they update at a long time interval but each
update includesmoremodifications.

Throughput.We also investigate the service throughput of
UFC2, i.e., the number of concurrent clients it can support.
For an intuitive perception, we also compare UFC2 with
WebR2sync+ [77], a highly efficient and scalable cloud stor-
age service for web users. We find that the server CPU of
WebR2sync+ is fully occupied (i.e., CPU utilization on all
cores approaching 100%) when it serves �1.5K users, indi-
cating its the user capacity is �1.5K under intensive work-
loads. By construct, UFC2 has a 6� throughput of
WebR2sync+, supporting �9K users (Fig. 30). Note that it is
the user capacity under a single VM server instance; for real-
world services with more concurrent clients, it is feasible to
cater to such scenarios by deploying more server instances.

5 LIMITATION, EXTENSION, AND DISCUSSION

The design of UFC2 is mainly focused on collaboration with
pure text files. In this section, we discuss the limitations of

our approach, and examine the possibility in extending this
method to broader scenarios.

Dealing With Binary Files. This work provides user-
friendly collaboration on text files but does not automati-
cally solve conflicts for binary files (e.g., multimedia files
and executable files). This simplification is reasonable as
text-oriented collaboration covers the overwhelming major-
ity of collaboration scenarios, and binary files are usually
generated as the output of text files processed or compiled
by specific programs. Nevertheless, there are also applica-
tion requirements to cooperatively work on none-text files.
Theoretically, with OT paradigms, it is possible to construct
collaborative platforms for other applications, as long as we
can precisely capture the user’s editing operations and
replay them on the server. Thus, it is feasible to build dedi-
cated collaborative editors for vector-based tasks (e.g.,
graphics modeling and CAD [23], [53]), as customized soft-
ware can directly catch users’ operations which can be effi-
ciently replayed.7 But for cloud storage services, acquiring
edit instructions for all kinds of applications is almost
impossible. To the best of our knowledge, Arnold [35] is the
only academic prototype that can record user’s instructions
(or equivalent operational effects) for any applications.
However, it relies on a modified Linux kernel to record the
execution of OS processes. This technique is definitely not
applicable to real-world cloud storage systems.

Dealing With Formatted Text. See Section 6 of the supple-
mentary material for details, available online.

6 RELATED WORK

Various schemes (and techniques) have been proposed to
address the collaboration conflicts in distributed file sys-
tems (DFS), version control systems (VCSes), and real-time
editors. We briefly survey conflict resolution in VCS in this
part; refer to the supplementary material, available online,
to see a review of other related topics.

Conflict Resolution in VCSes. Finding and handling con-
flicts is an important task in version control systems. Popu-
lar VCSes, such as SVN, CVS, Git, Subversion [63], RCS [72]
and SunPro [22] adopt a unstructured merge approach. They
use delta algorithms like bdiff [71] and Myers’s diff [58] to
find differences at a line granularity. The changed lines will
be marked as Insert and Delete actions, and will then be

Fig. 29. Total time consumption in a full lifecycle of delivering edits and
solving conflicts, with file size from 1 to 200 MB. “C2S” means “(from) cli-
ent to server”.

Fig. 30. Capacity in holding multiple users under intensive workloads,
comparing with WebR2sync+.

7. Note that in such tasks, data are represented as vectors, and oper-
ations are in essence mathematical calculations on them.

ZHAO ET AL.: UFC2: USER-FRIENDLY COLLABORATIVE CLOUD 2179

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

combined to form a merged version. However, if two users’
modifications are made on the same or adjacent lines, the
users are forced to manually solve the conflict (e.g., choose
which line to retain).

To address its limitations of insufficient semantics and
coarse-grained granularity, some advanced programming
tools adopt the structured merge [25], [26], [49], [82] approach,
which takes the syntactic structure of programs into account
and hopes to provide a fine-grained collaboration support
for programmers. These systems regard the programs as a
abstract syntax trees (AST) [59], or similar structures such as
graphs [43], [56], so as to incorporate all kinds of information
on the underlying programming language. With such struc-
tures, it is possible to resolve concurrent edits at a syntax
level and skip conflicts at non-essential parts (e.g., blanks,
tabs and comments) of the program. Nevertheless, the struc-
tured merge approach is language-specific, which means one
scheme can only support collaboration for one specific lan-
guage, e.g., JDime [49] and JDiff [26] only work for JAVA
programs. In this work, we focus on conflict resolution in
cloud storage-based collaborations with general purpose, in
which line-level granularity is too coarse whereas no syntax
structures can be utilized.

7 CONCLUSION

Despite a rich body of techniques for resolving conflicts in
collaborative systems, today’s mainstream cloud storage
services still use the simplest form, i.e., coarse-grained file-
level conflict detection and resolution. Given that collabora-
tion has become a major use case of cloud storage services,
existing mechanisms, as revealed in this paper, are defi-
cient, inconvenient, and sometimes frustrating.

To address the issue, we make a series of efforts towards
understanding and improving collaboration in cloud stor-
age services from a novel perspective of operations without
using any locks. We find that the vast majority of conflicts
reported by today’s cloud storage services are false conflicts,
and design intelligent approaches to efficient operation
inference, user-friendly operation transformation, and judi-
cious maintenance of historical versions. We implement all
the approaches in an open-source prototype system that can
significantly reduce collaboration conflicts and meanwhile
preserve the transparency and user-friendliness of cloud
storage services.

ACKNOWLEDGMENTS

We thank the reviewers for their valuable comments. We
appreciate Xianlong Wang and Wei Tang for their discus-
sions and technical supports.

REFERENCES

[1] Average U.S. Internet Speeds More Than Double Global Average.
[Online]. Available: https://www.ncta.com/whats-new/average-
us-internet-speeds-more-double-global-average

[2] Box – Secure File Sharing, Storage, and Collaboration. [Online].
Available: https://www.box.com/

[3] Charles Web Debugging Proxy. [Online]. Available: https://
www.charlesproxy.com

[4] Dropbox Tech Blog. [Online]. Available: https://dropbox.tech/

[5] The Etherpad Foundation, “Etherpad: Really real-time collabora-
tive document editing,” [Online]. Available: https://github.com/
ether/etherpad-lite

[6] Google Docs: Free Online Documents for Personal Use. [Online].
Available: https://www.google.com/docs/about/

[7] D. Kopytkov and P. Lee, “Meet bandaid, the dropbox service
proxy”, 2018. [Online]. Available: https://blogs.dropbox.com/
tech/2018/03/meet-bandaid-the-dropbox-service-proxy/

[8] Nutstore – Share Your Files Anytime, Anywhere, with Any
Device. [Online]. Available: https://www.jianguoyun.com/

[9] Nutstore Help Center. [Online]. Available: http://help.
jianguoyun.com/

[10] A. Ivanov, “Optimizing web servers for high throughput and low
latency,” 2017. [Online]. Available: https://blogs.dropbox.com/
tech/2017/09/optimizing-web-servers-for-high-throughput-and-
low-latency/

[11] Overleaf, Online LaTeX Editor. [Online]. Available: https://
www.overleaf.com/

[12] Seafile - Open Source File Sync and Share Software. [Online].
Available: https://www.seafile.com/en/home/

[13] Seafile Source Code. [Online]. Available: https://github.com/
haiwen/seafile

[14] Simultaneous Collaborative Editing of a LaTeX File (Online Forum
Discussion). [Online]. Available: https://tex.stackexchange.com/
questions/27549/simultaneous-collaborative-editing-of-a-latex-file

[15] Speedtest Global Index – Global Speeds August 2019. [Online].
Available: https://www.speedtest.net/global-index

[16] C. Smith, “Staggering dropbox statistics and facts (2021),” 2021.
[Online]. Available: https://expandedramblings.com/index.
php/dropbox-statistics/

[17] SugarSync – Cloud File Sharing, File Sync & Online Backup From
Any Device. [Online]. Available: https://www2.sugarsync.com/

[18] SugarSync Help Center. [Online]. Available: https://support.
sugarsync.com/hc

[19] The SugarSync Blog. [Online]. Available: https://www.
sugarsync.com/blog/

[20] B. Malmskog, “Tool for the (collaborative) job,” [Online]. Avail-
able: https://blogs.ams.org/phdplus/2016/09/11/tool-for-the-
collaborative-job/

[21] Wireshark. [Online]. Available: http://www.wireshark.org
[22] E. Adams, W. Gramlich, S. S. Muchnick, and S. Tirfing, “SunPro:

Engineering a pratical program development environment,” in
Proc. Int. Workshop Adv. Program. Environ., 1986, pp. 86–96.

[23] Agustina and C. Sun, “Dependency-conflict detection in real-time
collaborative 3D design systems,” in Proc. ACM Conf. Comput.
Supported Cooperative Work, 2013, pp. 715–728.

[24] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A. Sarma,
“An empirical examination of the relationship between code
smells and merge conflicts,” in Proc. ACM/IEEE Int. Symp. Empir.
Softw. Eng. Meas., 2017, pp. 58–67.

[25] S. Apel, O. Leßenich, and C. Lengauer, “Structured merge with
auto-tuning: Balancing precision and performance,” in Proc. 27th
ACM/IEEE Int. Conf. Automated Softw. Eng., 2012, pp. 120–129.

[26] T. Apiwattanapong, A. Orso, and M. J. Harrold, “JDiff: A
differencing technique and tool for object-oriented programs,”
Automated Softw. Eng., vol. 14, pp. 3–36, 2007.

[27] R. Bhargava, “Evolution of Dropbox’s edge network, 2017.
[Online]. Available: https://blogs.dropbox.com/tech/2017/06/
evolution-of-dropboxs-edge-network/

[28] C. Brindescu, I. Ahmed, R. Leano, and A. Sarma, “Planning for
untangling: Predicting the difficulty of merge conflicts,” in Proc.
IEEE/ACM 42nd Int. Conf. Softw. Eng., 2020, pp. 801–811.

[29] G. Canfora, L. Cerulo, and M. Di Penta, “Ldiff: An enhanced line
differencing tool,” in Proc. ACM/IEEE 31st Int. Conf. Softw. Eng.,
2009, pp. 595–598.

[30] J. Chen et al., “Lock-free collaboration support for cloud storage
services with operation inference and transformation,” in Proc.
18th USENIX Conf. File Storage Technologies, 2020, pp. 13–28.

[31] H. G. S. Consortium et al., “Finishing the euchromatic sequence of
the human genome,” Nature, vol. 431, pp. 931–945, 2004.

[32] Y. Cui et al., “TailCutter: Wisely cutting tail latency in cloud CDNs
under cost constraints,” IEEE/ACM Trans. Netw., vol. 27, no. 4, pp.
1612–1628, Aug. 2019.

[33] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol.
56, pp. 74–80, 2013.

[34] C. Delimitrou and C. Kozyrakis, “Amdahl’s law for tail latency,”
Commun. ACM, vol. 61, pp. 65–72, 2018.

2180 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

https://www.ncta.com/whats-new/average-us-internet-speeds-more-double-global-average
https://www.ncta.com/whats-new/average-us-internet-speeds-more-double-global-average
https://www.box.com/
https://www.charlesproxy.com
https://www.charlesproxy.com
https://dropbox.tech/
https://github.com/ether/etherpad-lite
https://github.com/ether/etherpad-lite
https://www.google.com/docs/about/
https://blogs.dropbox.com/tech/2018/03/meet-bandaid-the-dropbox-service-proxy/
https://blogs.dropbox.com/tech/2018/03/meet-bandaid-the-dropbox-service-proxy/
https://www.jianguoyun.com/
http://help.jianguoyun.com/
http://help.jianguoyun.com/
https://blogs.dropbox.com/tech/2017/09/optimizing-web-servers-for-high-throughput-and-low-latency/
https://blogs.dropbox.com/tech/2017/09/optimizing-web-servers-for-high-throughput-and-low-latency/
https://blogs.dropbox.com/tech/2017/09/optimizing-web-servers-for-high-throughput-and-low-latency/
https://www.overleaf.com/
https://www.overleaf.com/
https://www.seafile.com/en/home/
https://github.com/haiwen/seafile
https://github.com/haiwen/seafile
https://tex.stackexchange.com/questions/27549/simultaneous-collaborative-editing-of-a-latex-file
https://tex.stackexchange.com/questions/27549/simultaneous-collaborative-editing-of-a-latex-file
https://www.speedtest.net/global-index
https://expandedramblings.com/index.php/dropbox-statistics/
https://expandedramblings.com/index.php/dropbox-statistics/
https://www2.sugarsync.com/
https://support.sugarsync.com/hc
https://support.sugarsync.com/hc
https://www.sugarsync.com/blog/
https://www.sugarsync.com/blog/
https://blogs.ams.org/phdplus/2016/09/11/tool-for-the-collaborative-job/
https://blogs.ams.org/phdplus/2016/09/11/tool-for-the-collaborative-job/
http://www.wireshark.org
https://blogs.dropbox.com/tech/2017/06/evolution-of-dropboxs-edge-network/
https://blogs.dropbox.com/tech/2017/06/evolution-of-dropboxs-edge-network/

[35] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen, “Eidetic
systems,” in Proc. 11th USENIX Conf. Oper. Syst. Des. Implementa-
tion, 2014, pp. 525–540.

[36] J. E, Y. Cui, Z. Li, M. Ruan, and E. Zhai, “HyCloud: Tweaking hybrid
cloud storage services for cost-efficient filesystem hosting,” IEEE/
ACMTrans. Netw., vol. 28, no. 6, pp. 2629–2642, Dec. 2020.

[37] J. E, Y. Cui,M. Ruan, Z. Li, and E. Zhai, “HyCloud: Tweaking hybrid
cloud storage services for cost-efficient filesystem hosting,” in Proc.
IEEE Conf. Comput. Commun., 2019, pp. 2341–2349.

[38] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and S. Sengupta,
“Primary data deduplication-large scale study and systemdesign,”
in Proc. USENIX Conf. Annu. Tech. Conf., 2012, Art. no. 26.

[39] C. Ellis and S. Gibbs, “Concurrency control in groupware systems,”
in Proc. ACMSIGMOD Int. Conf. Manage. Data, 1989, pp. 399–407.

[40] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten,
“SPORC: Group collaboration using untrusted cloud resources,”
in Proc. 9th USENIX Conf. Oper. Syst. Des. Implementation, 2010,
pp. 337–350.

[41] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development: The contributor’s
perspective,” in Proc. IEEE/ACM 38th Int. Conf. Softw. Eng., 2016,
pp. 285–296.

[42] M. P. Grosvenor et al., “Queues don’t matter when you can JUMP
them!,” in Proc. 12th USENIX Conf. Netw. Syst. Des. Implementation,
2015, pp. 1–14.

[43] S. Horwitz and T. Reps, “The use of program dependence graphs
in software engineering,” in Proc. IEEE Int. Conf. Softw. Eng., 1992,
pp. 392–411.

[44] B. Hou and F. Chen, “GDS-LC: A latency-and cost-aware client
caching scheme for cloud storage,” ACM Trans. Storage, vol. 13,
2017, Art. no. 40.

[45] J. J. Hunt, K.-P. Vo, andW. F. Tichy, “Delta algorithms: An empirical
analysis,”ACMTrans. Softw. Eng.Methodol., vol. 7, pp. 192–214, 1998.

[46] A. B. Kahn, “Topological sorting of large networks,” Commun.
ACM, vol. 5, pp. 558–562, 1962.

[47] A. Kumar, I. Narayanan, T. Zhu, and A. Sivasubramaniam, “The
fast and the frugal: Tail latency aware provisioning for coping
with load variations,” in Proc. ACMWeb Conf., 2020, pp. 314–326.

[48] H. Le Nguyen and C.-L. Ignat, “Parallelism and conflicting
changes in Git version control systems,” in Proc. 15th Int. Workshop
Collaborative Editing Syst., 2017. [Online]. Available: https://hal.
inria.fr/hal-01588482/

[49] O. Leßenich, S. Apel, C. K€astner, G. Seibt, and J. Siegmund,
“Renaming and shifted code in structured merging: Looking
ahead for precision and performance,” in Proc. 32nd IEEE/ACM
Int. Conf. Automated Softw. Eng., 2017, pp. 543–553.

[50] Z. Li et al., “Towards network-level efficiency for cloud storage
services,” in Proc. Conf. Internet Meas. Conf., 2014, pp. 115–128.

[51] G. Liang and U. C. Kozat, “FAST CLOUD: Pushing the envelope
on delay performance of cloud storage with coding,” IEEE/ACM
Trans. Netw., vol. 22, no. 6, pp. 2012–2025, Dec. 2014.

[52] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,
and P. Camble, “Sparse indexing: Large scale, inline deduplica-
tion using sampling and locality,” in Proc. 7th Conf. File Storage
Technologies, 2009, pp. 111–123.

[53] X. Lv, F. He, Y. Cheng, and Y. Wu, “A novel CRDT-based syn-
chronization method for real-time collaborative CAD systems,”
Adv. Eng. Informat., vol. 38, pp. 381–391, 2018.

[54] D.Marx, “Graph colouring problems and their applications in sched-
uling,” Periodica Polytechnica Elect. Eng., vol. 48, pp. 11–16, 2004.

[55] G. Ghiotto, L. Murta, M. Barros, and A. van der Hoek, “On the
nature of merge conflicts: A study of 2,731 open source Java proj-
ects hosted by GitHub,” IEEE Trans. Softw. Eng., vol. 46, no. 8,
pp. 892–915, Aug. 2020.

[56] T. Mens, “Conditional graph rewriting as a domain-independent
formalism for software evolution,” in Proc. Int. Workshop Appl.
Graph Transformations Ind. Relevance, 1999, pp. 127–143.

[57] T. Mens, “A state-of-the-art survey on software merging,” IEEE
Trans. Softw. Eng., vol. 28, no. 5, pp. 449–462, May 2002.

[58] E. W. Myers, “An O(ND) difference algorithm and its variations,”
Algorithmica, vol. 1, pp. 251–266, 1986.

[59] I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source
code evolution using abstract syntax tree matching,” ACM SIG-
SOFT Softw. Eng. Notes, vol. 30, pp. 1–5, 2005.

[60] N. Nelson, C. Brindescu, S. McKee, A. Sarma, and D. Dig, “The
life-cycle of merge conflicts: Processes, barriers, and strategies,”
Empir. Softw. Eng., vol. 24, pp. 2863–2906, 2019.

[61] Y. S. Nugroho, H. Hata, and K. Matsumoto, “How different are
different diff algorithms in Git?,” Empir. Softw. Eng., vol. 25,
pp. 790–823, 2020.

[62] S. Perez De Rosso and D. Jackson, “What’s wrong with Git?: A
conceptual design analysis,” in Proc. ACM Int. Symp. New Ideas
New Paradigms Reflections Program. Softw., 2013, pp. 37–52.

[63] C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick, Version
Vontrol With Subversion: Next Generation Open Source Version Con-
trol. Sebastopol, CA, USA: O’Reilly Media, Inc., 2008.

[64] C. Policroniades and I. Pratt, “Alternatives for detecting redun-
dancy in storage systems data,” in Proc. Annu. Conf. USENIX
Annu. Tech. Conf., 2004, Art. no. 6.

[65] K. P. Puttaswamy, T. Nandagopal, and M. Kodialam, “Frugal
storage for cloud file systems,” in Proc. 7th ACM Eur. Conf. Com-
put. Syst., 2012, pp. 71–84.

[66] B. Shao, D. Li, T. Lu, and N. Gu, “An operational transformation
based synchronization protocol for web 2.0 applications,” in Proc.
ACM Conf. Comput. Supported Cooperative Work, 2011, pp. 563–572.

[67] M. Sousa, I. Dillig, and S. K. Lahiri, “Verified three-way program
merge,” Proc. ACM Program. Lang., vol. 2, 2018, Art. no. 165.

[68] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti, “iDedup:
Latency-aware, inline data deduplication for primary storage,” in
Proc. 10th USENIX Conf. File Storage Technologies, 2012, Art. no. 24.

[69] Y. Su, D. Feng, Y. Hua, and Z. Shi, “Understanding the latency
distribution of cloud object storage systems,” J. Parallel Distrib.
Comput., vol. 128, pp. 71–83, 2019.

[70] L. Suresh, M. Canini, S. Schmid, and A. Feldmann, “C3: Cutting tail
latency in cloud data stores via adaptive replica selection,” in Proc.
12thUSENIXConf. Netw. Syst. Des. Implementation, 2015, pp. 513–527.

[71] W. F. Tichy, “The string-to-string correction problem with block
moves,” ACM Trans. Comput. Syst., vol. 2, pp. 309–321, 1984.

[72] W. F. Tichy, “RCS – A system for version control,” Softw.: Practice
Experience, vol. 15, pp. 637–654, 1985.

[73] A. Tridgell and P. Mackerras, “The Rsync algorithm,” Technical
report, 1996. [Online]. Available: https://openresearch-repository.
anu.edu.au/bitstream/1885/40765/3/TR-CS-96–05.pdf

[74] Z. Wu, C. Yu, and H. V. Madhyastha, “Costlo: Cost-effective
redundancy for lower latency variance on cloud storage services,”
in Proc. 12th USENIX Symp. Netw. Syst. Des. Implementation, 2015,
pp. 543–557.

[75] W. Xia et al., “A comprehensive study of the past, present, and
future of data deduplication,” Proc. IEEE, vol. 104, no. 9, pp. 1681–
1710, Sep. 2016.

[76] W. Xia, H. Jiang, D. Feng, and Y. Hua, “SiLo: A similarity-locality
based near-exact deduplication scheme with low RAM overhead
and high throughput,” in Proc. USENIX Annu. Tech. Conf., 2011,
pp. 26–28.

[77] H. Xiao et al., “Towards web-based delta synchronization for
cloud storage services,” in Proc. 16th USENIX Conf. File Storage
Technologies, 2018, pp. 155–168.

[78] X. Yang et al., “Fast and light bandwidth testing for internet
users,” in Proc. 18th USENIX Symp. Netw. Syst. Des. Implementa-
tion, 2021, pp. 1011–1026.

[79] Y. Zhang, D. Meisner, J. Mars, and L. Tang, “Treadmill: Attribut-
ing the source of tail latency through precise load testing and sta-
tistical inference,” in Proc. ACM/IEEE 43rd Annu. Int. Symp.
Comput. Archit., 2016, pp. 456–468.

[80] X. Zhou, J. Yuan, P. Shilane, W. Xia, and X. Wang, “The Dilemma
between deduplication and locality: Can both be achieved?,” in
Proc. 19th USENIXConf. File Storage Technologies, 2021, pp. 171–185.

[81] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in
the data domain deduplication file system,” in Proc. 6th USENIX
Conf. File Storage Technologies, 2008, Art. no. 18.

[82] F. Zhu and F. He, “Conflict resolution for structured merge via
version space algebra,” Proc. ACM Program. Lang., vol. 2, 2018,
Art. no. 166.

Minghao Zhao (Student Member, IEEE) received
the BS degree from Harbin Engineering Univer-
sity, Harbin, China, in 2014, and the MS degree
from Shandong University, Jinan, China, in 2017.
He is currently working toward the PhD degree in
the School of Software, Tsinghua University, Bei-
jing, China. His research interests include cloud
computing/storage, operating system, and soft-
ware engineering. He is a student member of the
ACM andCCF.

ZHAO ET AL.: UFC2: USER-FRIENDLY COLLABORATIVE CLOUD 2181

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

https://hal.inria.fr/hal-01588482/
https://hal.inria.fr/hal-01588482/
https://openresearch-repository.anu.edu.au/bitstream/1885/40765/3/TR-CS-96--05.pdf
https://openresearch-repository.anu.edu.au/bitstream/1885/40765/3/TR-CS-96--05.pdf

Zhenhua Li (Senior Member, IEEE) received the
BS andMS degrees fromNanjing University, Nanj-
ing, China, in 2005 and 2008, respectively, and the
PhD degree fromPeking University, Beijing, China,
in 2013, all in computer science and technology.
He is currently an associate professor with the
School of Software, Tsinghua University. His
research interests include mobile networking/emu-
lation and cloud computing/storage. He is a senior
member of the ACM.

Wei Liu received the BS degree from Jilin Univer-
sity, Changchun, China, in 2020. He is currently
working toward the PhD degree in the School of
Software, Tsinghua University, Beijing, China.
His research interests include, but are not limited
to video streaming applications and operating
systems.

Jian Chen received the BS and MS degrees from
Tsinghua University, Beijing, China. He is cur-
rently a staff engineer with ByteDance Inc. His
research interests include cloud computing, cloud
storage, and data center networking.

Xingyao Li received the BS degree from the
School of Software, Tsinghua University, Beijing,
China, where he is currently working toward the
MEng degree. His research interests include
cloud computing and future networking.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2182 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on February 20,2022 at 08:56:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

